BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 30539483)

  • 1. A Method to Detect the Binding of Hyper-Glycosylated Fragment Crystallizable (Fc) Region of Human IgG1 to Glycan Receptors.
    Blundell P; Pleass R
    Methods Mol Biol; 2019; 1904():417-421. PubMed ID: 30539483
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Terminal sugars of Fc glycans influence antibody effector functions of IgGs.
    Raju TS
    Curr Opin Immunol; 2008 Aug; 20(4):471-8. PubMed ID: 18606225
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conformational effects of N-glycan core fucosylation of immunoglobulin G Fc region on its interaction with Fcγ receptor IIIa.
    Sakae Y; Satoh T; Yagi H; Yanaka S; Yamaguchi T; Isoda Y; Iida S; Okamoto Y; Kato K
    Sci Rep; 2017 Oct; 7(1):13780. PubMed ID: 29062024
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antibody Fucosylation Lowers the FcγRIIIa/CD16a Affinity by Limiting the Conformations Sampled by the N162-Glycan.
    Falconer DJ; Subedi GP; Marcella AM; Barb AW
    ACS Chem Biol; 2018 Aug; 13(8):2179-2189. PubMed ID: 30016589
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The interplay of protein engineering and glycoengineering to fine-tune antibody glycosylation and its impact on effector functions.
    Wang Q; Wang T; Zhang R; Yang S; McFarland KS; Chung CY; Jia H; Wang LX; Cipollo JF; Betenbaugh MJ
    Biotechnol Bioeng; 2022 Jan; 119(1):102-117. PubMed ID: 34647616
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural basis for improved efficacy of therapeutic antibodies on defucosylation of their Fc glycans.
    Mizushima T; Yagi H; Takemoto E; Shibata-Koyama M; Isoda Y; Iida S; Masuda K; Satoh M; Kato K
    Genes Cells; 2011 Nov; 16(11):1071-80. PubMed ID: 22023369
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural analysis of Fc/FcγR complexes: a blueprint for antibody design.
    Caaveiro JM; Kiyoshi M; Tsumoto K
    Immunol Rev; 2015 Nov; 268(1):201-21. PubMed ID: 26497522
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CD16a with oligomannose-type
    Subedi GP; Barb AW
    J Biol Chem; 2018 Oct; 293(43):16842-16850. PubMed ID: 30213862
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural mechanism of high affinity FcγRI recognition of immunoglobulin G.
    Lu J; Sun PD
    Immunol Rev; 2015 Nov; 268(1):192-200. PubMed ID: 26497521
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterizing the effect of multiple Fc glycan attributes on the effector functions and FcγRIIIa receptor binding activity of an IgG1 antibody.
    Pace D; Lewis N; Wu T; Gillespie R; Leiske D; Velayudhan J; Rohrbach A; Connell-Crowley L
    Biotechnol Prog; 2016 Sep; 32(5):1181-1192. PubMed ID: 27160519
    [TBL] [Abstract][Full Text] [Related]  

  • 11. IgG Fc Glycosylation in Human Immunity.
    Wang TT
    Curr Top Microbiol Immunol; 2019; 423():63-75. PubMed ID: 30805712
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fc-galactosylation modulates antibody-dependent cellular cytotoxicity of therapeutic antibodies.
    Thomann M; Reckermann K; Reusch D; Prasser J; Tejada ML
    Mol Immunol; 2016 May; 73():69-75. PubMed ID: 27058641
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Restricted processing of CD16a/Fc γ receptor IIIa
    Patel KR; Roberts JT; Subedi GP; Barb AW
    J Biol Chem; 2018 Mar; 293(10):3477-3489. PubMed ID: 29330305
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sculpting therapeutic monoclonal antibody N-glycans using endoglycosidases.
    Trastoy B; Du JJ; García-Alija M; Li C; Klontz EH; Wang LX; Sundberg EJ; Guerin ME
    Curr Opin Struct Biol; 2022 Feb; 72():248-259. PubMed ID: 34998123
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering the fragment crystallizable (Fc) region of human IgG1 multimers and monomers to fine-tune interactions with sialic acid-dependent receptors.
    Blundell PA; Le NPL; Allen J; Watanabe Y; Pleass RJ
    J Biol Chem; 2017 Aug; 292(31):12994-13007. PubMed ID: 28620050
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fc glycan sialylation of biotherapeutic monoclonal antibodies has limited impact on antibody-dependent cellular cytotoxicity.
    Branstetter E; Duff RJ; Kuhns S; Padaki R
    FEBS Open Bio; 2021 Nov; 11(11):2943-2949. PubMed ID: 34355537
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of antibody effector functions through IgG Fc N-glycosylation.
    Quast I; Peschke B; Lünemann JD
    Cell Mol Life Sci; 2017 Mar; 74(5):837-847. PubMed ID: 27639381
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of antibody glycosylation structures that predict monoclonal antibody Fc-effector function.
    Chung AW; Crispin M; Pritchard L; Robinson H; Gorny MK; Yu X; Bailey-Kellogg C; Ackerman ME; Scanlan C; Zolla-Pazner S; Alter G
    AIDS; 2014 Nov; 28(17):2523-30. PubMed ID: 25160934
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single molecule Förster resonance energy transfer studies of the effect of EndoS deglycosylation on the structure of IgG.
    Piraino MS; Kelliher MT; Aburas J; Southern CA
    Immunol Lett; 2015 Sep; 167(1):29-33. PubMed ID: 26112419
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unique carbohydrate-carbohydrate interactions are required for high affinity binding between FcgammaRIII and antibodies lacking core fucose.
    Ferrara C; Grau S; Jäger C; Sondermann P; Brünker P; Waldhauer I; Hennig M; Ruf A; Rufer AC; Stihle M; Umaña P; Benz J
    Proc Natl Acad Sci U S A; 2011 Aug; 108(31):12669-74. PubMed ID: 21768335
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.