These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
73 related articles for article (PubMed ID: 3053981)
1. Low concentrations of trifluoperazine arrest the cell division cycle of Saccharomyces cerevisiae at two specific stages. Eilam Y; Chernichovsky D J Gen Microbiol; 1988 Apr; 134(4):1063-9. PubMed ID: 3053981 [TBL] [Abstract][Full Text] [Related]
2. [The different effects of CaM inhibitors of phenothiazines on the proliferation of Saccharomyces cerevisiae and Schizosaccharomyces pombe]. Lu L; Jiang AQ; Yuan S; Yin LH; Huang WY; Fan WS Shi Yan Sheng Wu Xue Bao; 2000 Jun; 33(2):141-9. PubMed ID: 12548977 [TBL] [Abstract][Full Text] [Related]
3. Autophagic death after cell cycle arrest at the restrictive temperature in temperature-sensitive cell division cycle and secretory mutants of the yeast Saccharomyces cerevisiae. Motizuki M; Yokota S; Tsurugi K Eur J Cell Biol; 1995 Nov; 68(3):275-87. PubMed ID: 8603680 [TBL] [Abstract][Full Text] [Related]
4. Genetic study of the role of calcium ions in the cell division cycle of Saccharomyces cerevisiae: a calcium-dependent mutant and its trifluoperazine-dependent pseudorevertants. Ohya Y; Ohsumi Y; Anraku Y Mol Gen Genet; 1984; 193(3):389-94. PubMed ID: 6369073 [TBL] [Abstract][Full Text] [Related]
5. Meiotic effects of DNA-defective cell division cycle mutations of Saccharomyces cerevisiae. Schild D; Byers B Chromosoma; 1978 Dec; 70(1):109-30. PubMed ID: 367734 [TBL] [Abstract][Full Text] [Related]
6. Unequal division in Saccharomyces cerevisiae and its implications for the control of cell division. Hartwell LH; Unger MW J Cell Biol; 1977 Nov; 75(2 Pt 1):422-35. PubMed ID: 400873 [TBL] [Abstract][Full Text] [Related]
7. Carbon and energetic uncoupling are associated with block of division at different stages of the cell cycle in several cdc mutants of Saccharomyces cerevisiae. Aon MA; Mónaco ME; Cortassa S Exp Cell Res; 1995 Mar; 217(1):42-51. PubMed ID: 7867719 [TBL] [Abstract][Full Text] [Related]
8. Carbon and energy uncoupling associated with cell cycle arrest of cdc mutants of Saccharomyces cerevisiae may be linked to glucose-induced catabolite repression. Mónaco ME; Valdecantos PA; Aon MA Exp Cell Res; 1995 Mar; 217(1):52-6. PubMed ID: 7867720 [TBL] [Abstract][Full Text] [Related]
9. Active extrusion of potassium in the yeast Saccharomyces cerevisiae induced by low concentrations of trifluoperazine. Eilam Y; Lavi H; Grossowicz N J Gen Microbiol; 1985 Oct; 131(10):2555-64. PubMed ID: 3906026 [TBL] [Abstract][Full Text] [Related]
10. Amino acid transport: its role in cell division and growth of Saccharomyces cerevisiae cells. Dudani AK; Prasad R Biochem Int; 1983 Jul; 7(1):15-22. PubMed ID: 6383387 [TBL] [Abstract][Full Text] [Related]
11. Cell cycle studies on the mode of action of yeast K28 killer toxin. Schmitt MJ; Klavehn P; Wang J; Schönig I; Tipper DJ Microbiology (Reading); 1996 Sep; 142 ( Pt 9)():2655-62. PubMed ID: 8828235 [TBL] [Abstract][Full Text] [Related]
12. Status of calcium influx in cell cycle of S. cerevisiae. Anand S; Prasad R Biochem Int; 1987 May; 14(5):963-70. PubMed ID: 3331516 [TBL] [Abstract][Full Text] [Related]
13. Tracking of individual cell cohorts in asynchronous Saccharomyces cerevisiae populations. Porro D; Srienc F Biotechnol Prog; 1995; 11(3):342-7. PubMed ID: 7619403 [TBL] [Abstract][Full Text] [Related]
14. Rise in intracellular pH is concurrent with 'start' progression of Saccharomyces cerevisiae. Anand S; Prasad R J Gen Microbiol; 1989 Aug; 135(8):2173-9. PubMed ID: 2699326 [TBL] [Abstract][Full Text] [Related]
15. Regulation of mating in the cell cycle of Saccharomyces cerevisiae. Reid BJ; Hartwell LH J Cell Biol; 1977 Nov; 75(2 Pt 1):355-65. PubMed ID: 400872 [TBL] [Abstract][Full Text] [Related]
16. Calcium uptake during the cell cycle of Saccharomyces cerevisiae. Saavedra-Molina A; Villalobos R; Borbolla M FEBS Lett; 1983 Aug; 160(1-2):195-7. PubMed ID: 6350041 [TBL] [Abstract][Full Text] [Related]
17. Effective stage in the cell cycle for control of the budding direction of cdc mutants of Saccharomyces cerevisiae using electric stimulus. Matsuoka H; Matsumoto S; Kinoshita M; Yamada S Biochim Biophys Acta; 1988 Oct; 971(3):255-65. PubMed ID: 3048417 [TBL] [Abstract][Full Text] [Related]
18. Inhibition of epidermal growth factor-induced phosphorylation by trifluoperazine. Ross AH; Damsky C; Phillips PD; Hwang F; Vance P J Cell Physiol; 1985 Sep; 124(3):499-506. PubMed ID: 2413056 [TBL] [Abstract][Full Text] [Related]
19. The possible functional significance of phosphatidylinositol in G1 arrest of Saccharomyces cerevisiae. Dudani AK; Trivedi A; Prasad R FEBS Lett; 1983 Mar; 153(1):34-6. PubMed ID: 6337878 [TBL] [Abstract][Full Text] [Related]
20. Cell cycle arrest and apoptosis, two alternative mechanisms for PMKT2 killer activity. Santos A; Alonso A; Belda I; Marquina D Fungal Genet Biol; 2013 Jan; 50():44-54. PubMed ID: 23137543 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]