These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 30540072)

  • 41. Protein Profile of the Acquired Enamel Pellicle after Rinsing with Whole Milk, Fat-Free Milk, and Water: An in vivo Study.
    Cassiano LPS; Ventura TMS; Silva CMS; Leite AL; Magalhães AC; Pessan JP; Buzalaf MAR
    Caries Res; 2018; 52(4):288-296. PubMed ID: 29393147
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The influence of fillers and protease inhibitors in experimental resins in the protein profile of the acquired pellicle formed in situ on enamel-resin specimens.
    Pelá VT; Prakki A; Wang L; Ventura TMS; de Souza E Silva CM; Cassiano LPS; Brianezzi LFF; Leite AL; Buzalaf MAR
    Arch Oral Biol; 2019 Dec; 108():104527. PubMed ID: 31472277
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Optimizing the formation of the acquired enamel pellicle in vitro for proteomic analysis.
    PelÁ VT; Ventura TMO; Buzalaf MAR
    J Appl Oral Sci; 2020; 28():e20200189. PubMed ID: 32785522
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effect of gels containing chlorhexidine or epigallocatechin-3-gallate on the protein composition of the acquired enamel pellicle.
    de Souza-E-Silva CM; da Silva Ventura TM; de Pau L; la Silva Cassiano ; de Lima Leite A; Buzalaf MAR
    Arch Oral Biol; 2017 Oct; 82():92-98. PubMed ID: 28622550
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The proteomic profile of the acquired enamel pellicle according to its location in the dental arches.
    Ventura TMDS; Cassiano LPS; Souza E Silva CM; Taira EA; Leite AL; Rios D; Buzalaf MAR
    Arch Oral Biol; 2017 Jul; 79():20-29. PubMed ID: 28282514
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Label-free quantitative proteome analysis of the surface-bound salivary pellicle.
    Delius J; Trautmann S; Médard G; Kuster B; Hannig M; Hofmann T
    Colloids Surf B Biointerfaces; 2017 Apr; 152():68-76. PubMed ID: 28086104
    [TBL] [Abstract][Full Text] [Related]  

  • 47. In situ effect of enamel salivary exposure time and type of intraoral appliance before an erosive challenge.
    Mendonça FL; Jordão MC; Ionta FQ; Buzalaf MAR; Honório HM; Wang L; Rios D
    Clin Oral Investig; 2017 Nov; 21(8):2465-2471. PubMed ID: 28064349
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Bovine tooth is a substitute for human tooth on bond strength studies: A systematic review and meta-analysis of in vitro studies.
    Soares FZ; Follak A; da Rosa LS; Montagner AF; Lenzi TL; Rocha RO
    Dent Mater; 2016 Nov; 32(11):1385-1393. PubMed ID: 27692438
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Identification of acid-resistant proteins in acquired enamel pellicle.
    Delecrode TR; Siqueira WL; Zaidan FC; Bellini MR; Moffa EB; Mussi MC; Xiao Y; Buzalaf MA
    J Dent; 2015 Dec; 43(12):1470-5. PubMed ID: 26498726
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Comparison of chemical composition of enamel and dentine in human, bovine, porcine and ovine teeth.
    Teruel Jde D; Alcolea A; Hernández A; Ruiz AJ
    Arch Oral Biol; 2015 May; 60(5):768-75. PubMed ID: 25766469
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Exposure to acids changes the proteomic of acquired dentine pellicle.
    Delecrode TR; Siqueira WL; Zaidan FC; Bellini MR; Leite AL; Xiao Y; Rios D; Magalhães AC; Buzalaf MA
    J Dent; 2015 May; 43(5):583-8. PubMed ID: 25676181
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Proteomic evaluation of acquired enamel pellicle during in vivo formation.
    Lee YH; Zimmerman JN; Custodio W; Xiao Y; Basiri T; Hatibovic-Kofman S; Siqueira WL
    PLoS One; 2013; 8(7):e67919. PubMed ID: 23844127
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Proteome and peptidome of human acquired enamel pellicle on deciduous teeth.
    Zimmerman JN; Custodio W; Hatibovic-Kofman S; Lee YH; Xiao Y; Siqueira WL
    Int J Mol Sci; 2013 Jan; 14(1):920-34. PubMed ID: 23296270
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Saliva and dental erosion.
    Buzalaf MA; Hannas AR; Kato MT
    J Appl Oral Sci; 2012; 20(5):493-502. PubMed ID: 23138733
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Bovine teeth as substitute for human teeth in dental research: a review of literature.
    Yassen GH; Platt JA; Hara AT
    J Oral Sci; 2011 Sep; 53(3):273-82. PubMed ID: 21959653
    [TBL] [Abstract][Full Text] [Related]  

  • 56. In vitro and in situ erosion models for evaluating tooth substance loss.
    West NX; Davies M; Amaechi BT
    Caries Res; 2011; 45 Suppl 1():43-52. PubMed ID: 21625132
    [TBL] [Abstract][Full Text] [Related]  

  • 57. pH-cycling models for in vitro evaluation of the efficacy of fluoridated dentifrices for caries control: strengths and limitations.
    Buzalaf MA; Hannas AR; Magalhães AC; Rios D; Honório HM; Delbem AC
    J Appl Oral Sci; 2010; 18(4):316-34. PubMed ID: 20835565
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Initial bioadhesion on dental materials as a function of contact time, pH, surface wettability, and isoelectric point.
    Müller C; Lüders A; Hoth-Hannig W; Hannig M; Ziegler C
    Langmuir; 2010 Mar; 26(6):4136-41. PubMed ID: 19888741
    [TBL] [Abstract][Full Text] [Related]  

  • 59.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 60.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.