BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

44 related articles for article (PubMed ID: 30540163)

  • 1. Low Fe(II) Concentrations Catalyze the Dissolution of Various Fe(III) (hydr)oxide Minerals in the Presence of Diverse Ligands and over a Broad pH Range.
    Kang K; Schenkeveld WDC; Biswakarma J; Borowski SC; Hug SJ; Hering JG; Kraemer SM
    Environ Sci Technol; 2019 Jan; 53(1):98-107. PubMed ID: 30540163
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microbial removal of uranyl from aqueous solution by Leifsonia sp. in the presence of different forms of iron oxides.
    Pang C; Li Y; Wu H; Deng Z; Yuan S; Tan W
    J Environ Radioact; 2024 Feb; 272():107367. PubMed ID: 38171110
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of Fe(III) (hydr)oxide mineralogy on the development of microbial communities originating from soil, surface water, groundwater, and aerosols.
    Zhang Y; O'Loughlin EJ; Park SY; Kwon MJ
    Sci Total Environ; 2023 Dec; 905():166993. PubMed ID: 37717756
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anoxic and Oxic Oxidation of Rocks Containing Fe(II)Mg-Silicates and Fe(II)-Monosulfides as Source of Fe(III)-Minerals and Hydrogen. Geobiotropy.
    Bassez MP
    Orig Life Evol Biosph; 2017 Dec; 47(4):453-480. PubMed ID: 28361301
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Water near its Supercritical Point and at Alkaline pH for the Production of Ferric Oxides and Silicates in Anoxic Conditions. A New Hypothesis for the Synthesis of Minerals Observed in Banded Iron Formations and for the Related Geobiotropic Chemistry inside Fluid Inclusions.
    Bassez MP
    Orig Life Evol Biosph; 2018 Sep; 48(3):289-320. PubMed ID: 30091010
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nalidixic Acid and Fe(II)/Cu(II) Coadsorption at Goethite and Akaganéite Surfaces.
    Cheng W; Li J; Sun J; Luo T; Marsac R; Boily JF; Hanna K
    Environ Sci Technol; 2023 Oct; 57(41):15680-15692. PubMed ID: 37796760
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Insights into sunlight-driven transformation of tetracycline by iron (hydr)oxides: The dominating role of self-generated hydrogen peroxide.
    Li S; Pang J; Han W; Chang T; Luo L; Li X; Liu J; Cheng H
    Water Res; 2024 Jul; 258():121800. PubMed ID: 38796909
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxidation of Biogenic U(IV) in the Presence of Bioreduced Clay Minerals and Organic Ligands.
    Li R; Zhang L; Chen Y; Xia Q; Liu D; Huang Y; Dong H
    Environ Sci Technol; 2024 Jan; 58(3):1541-1550. PubMed ID: 38199960
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of Competing Metals and Humic Substances on Uranium Mobilization from Noncrystalline U(IV) Induced by Anthropogenic and Biogenic Ligands.
    Chardi KJ; Schenkeveld WDC; Kumar N; Giammar DE; Kraemer SM
    Environ Sci Technol; 2023 Oct; 57(42):16006-16015. PubMed ID: 37819156
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of riboflavin and desferrioxamine B on Fe(II) oxidation by O
    Zhang P; Van Cappellen P; Pi K; Yuan S
    Fundam Res; 2022 Mar; 2(2):208-217. PubMed ID: 38933163
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stability of Coumarins and Determination of the Net Iron Oxidation State of Iron-Coumarin Complexes: Implications for Examining Plant Iron Acquisition Mechanisms.
    Kang K; Schenkeveld WDC; Weber G; Kraemer SM
    ACS Earth Space Chem; 2023 Dec; 7(12):2339-2352. PubMed ID: 38148994
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of iron (hydr)oxide mineralogy and contents in aquifer sediments on dissolved organic carbon attenuations during aquifer storage and recovery.
    Anggraini TM; An S; Kim SH; Kwon MJ; Chung J; Lee S
    Chemosphere; 2024 Mar; 351():141196. PubMed ID: 38218241
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Micro- and nano-scale mineralogical characterization of Fe(II)-oxidizing bacterial stalks.
    Vigliaturo R; Marengo A; Bittarello E; Pérez-Rodríguez I; Dražić G; Gieré R
    Geobiology; 2020 Sep; 18(5):606-618. PubMed ID: 32459887
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adsorption of hydroxamate siderophores and EDTA on goethite in the presence of the surfactant sodium dodecyl sulfate.
    Carrasco N; Kretzschmar R; Xu J; Kraemer SM
    Geochem Trans; 2009 Jun; 10():5. PubMed ID: 19523232
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Goethite dissolution by acidophilic bacteria.
    Stanković S; Schippers A
    Front Microbiol; 2024; 15():1360018. PubMed ID: 38846564
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rates and Mechanism of Vivianite Dissolution under Anoxic Conditions.
    Metz R; Kumar N; Schenkeveld WDC; Kraemer SM
    Environ Sci Technol; 2023 Nov; 57(45):17266-17277. PubMed ID: 37924285
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Effect of pH and Biogenic Ligands on the Weathering of Chrysotile Asbestos: The Pivotal Role of Tetrahedral Fe in Dissolution Kinetics and Radical Formation.
    Walter M; Schenkeveld WDC; Reissner M; Gille L; Kraemer SM
    Chemistry; 2019 Mar; 25(13):3286-3300. PubMed ID: 30417458
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermodynamic Two-Site Surface Reaction Model for Predicting Munition Constituent Reduction Kinetics with Iron (Oxyhydr)oxides.
    Hickey KP; Cardenas-Hernandez P; Di Toro DM; Allen HE; Carbonaro RF; Chiu PC
    Environ Sci Technol; 2023 Aug; 57(33):12411-12420. PubMed ID: 37566737
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of organic ligands on the stoichiometry of magnetite nanoparticles.
    Jungcharoen P; Marsac R; Choueikani F; Masson D; Pédrot M
    Nanoscale Adv; 2023 Aug; 5(16):4213-4223. PubMed ID: 37560422
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reduction-cleavable desferrioxamine B pulldown system enriches Ni(ii)-superoxide dismutase from a
    Ni J; Wood JL; White MY; Lihi N; Markham TE; Wang J; Chivers PT; Codd R
    RSC Chem Biol; 2023 Nov; 4(12):1064-1072. PubMed ID: 38033724
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.