These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 30540164)

  • 1. Nickel-Salen-Type Polymer as Conducting Agent and Binder for Carbon-Free Cathodes in Lithium-Ion Batteries.
    O'Meara C; Karushev MP; Polozhentceva IA; Dharmasena S; Cho H; Yurkovich BJ; Kogan S; Kim JH
    ACS Appl Mater Interfaces; 2019 Jan; 11(1):525-533. PubMed ID: 30540164
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel polymer Li-ion binder carboxymethyl cellulose derivative enhanced electrochemical performance for Li-ion batteries.
    Qiu L; Shao Z; Wang D; Wang F; Wang W; Wang J
    Carbohydr Polym; 2014 Nov; 112():532-8. PubMed ID: 25129778
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced electrochemical properties of LiFePO4 (LFP) cathode using the carboxymethyl cellulose lithium (CMC-Li) as novel binder in lithium-ion battery.
    Qiu L; Shao Z; Wang D; Wang W; Wang F; Wang J
    Carbohydr Polym; 2014 Oct; 111():588-91. PubMed ID: 25037391
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparing the Ion-Conducting Polymers with Sulfonate and Ether Moieties as Cathode Binders for High-Power Lithium-Ion Batteries.
    Tsao CH; Yang TK; Chen KY; Fang CE; Ueda M; Richter FH; Janek J; Chiu CC; Kuo PL
    ACS Appl Mater Interfaces; 2021 Mar; 13(8):9846-9855. PubMed ID: 33594888
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Environment-friendly cathodes using biopolymer chitosan with enhanced electrochemical behavior for use in lithium ion batteries.
    Prasanna K; Subburaj T; Jo YN; Lee WJ; Lee CW
    ACS Appl Mater Interfaces; 2015 Apr; 7(15):7884-90. PubMed ID: 25822540
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rational Design of Effective Binders for LiFePO
    Huang S; Huang X; Huang Y; He X; Zhuo H; Chen S
    Polymers (Basel); 2021 Sep; 13(18):. PubMed ID: 34578047
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High Active Material Loading in Organic Electrodes Enabled by a Multifunctional Binder.
    Battaglia AM; Pahlavanlu P; Grignon E; An SY; Seferos DS
    ACS Appl Mater Interfaces; 2022 Sep; 14(37):42298-42307. PubMed ID: 36083595
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fragmented carbon nanotube macrofilms as adhesive conductors for lithium-ion batteries.
    Cao Z; Wei B
    ACS Nano; 2014 Mar; 8(3):3049-59. PubMed ID: 24564355
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Graphene/PVDF Composites for Ni-rich Oxide Cathodes Toward High-Energy Density Li-ion Batteries.
    Park CW; Lee JH; Seo JK; Ran WTA; Whang D; Hwang SM; Kim YJ
    Materials (Basel); 2021 Apr; 14(9):. PubMed ID: 33925721
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrochemically Activated Nickel-Carbon Composite as Ultrastable Cathodes for Rechargeable Nickel-Zinc Batteries.
    Meng L; Lin D; Wang J; Zeng Y; Liu Y; Lu X
    ACS Appl Mater Interfaces; 2019 Apr; 11(16):14854-14861. PubMed ID: 30938148
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Water-Soluble Trifunctional Binder for Sulfur Cathodes for Lithium-Sulfur Battery.
    Yang Y; Qiu J; Cai L; Liu C; Wu S; Wei X; Luo D; Zhang B; Yang X; Hui KN; Liu J; Lin Z
    ACS Appl Mater Interfaces; 2021 Jul; 13(28):33066-33074. PubMed ID: 34251170
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fast-Charging, Binder-Free Lithium Battery Cathodes Enabled via Multidimensional Conductive Networks.
    Checko S; Ju Z; Zhang B; Zheng T; Takeuchi ES; Marschilok AC; Takeuchi KJ; Yu G
    Nano Lett; 2024 Feb; 24(5):1695-1702. PubMed ID: 38261789
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Ternary Polyaniline/Active Carbon/Lithium Iron Phosphate Composite as Cathode Material for Lithium Ion Battery.
    Wang X; Zhang W; Huang Y; Xia T; Lian Y
    J Nanosci Nanotechnol; 2016 Jun; 16(6):6494-7. PubMed ID: 27427742
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reversible Redox Processes in Polymer of Unmetalated Salen-Type Ligand: Combined Electrochemical in Situ Studies and Direct Comparison with Corresponding Nickel Metallopolymer.
    Polozhentseva J; Novozhilova M; Karushev M
    Int J Mol Sci; 2022 Feb; 23(3):. PubMed ID: 35163715
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Small things make a big difference: binder effects on the performance of Li and Na batteries.
    Chou SL; Pan Y; Wang JZ; Liu HK; Dou SX
    Phys Chem Chem Phys; 2014 Oct; 16(38):20347-59. PubMed ID: 25032670
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hierarchical Porous Nickel Cobaltate Nanoneedle Arrays as Flexible Carbon-Protected Cathodes for High-Performance Lithium-Oxygen Batteries.
    Xue H; Wu S; Tang J; Gong H; He P; He J; Zhou H
    ACS Appl Mater Interfaces; 2016 Apr; 8(13):8427-35. PubMed ID: 26967936
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Newly Designed Composite Gel Polymer Electrolyte Based on Poly(Vinylidene Fluoride-Hexafluoropropylene) (PVDF-HFP) for Enhanced Solid-State Lithium-Sulfur Batteries.
    Xia Y; Wang X; Xia X; Xu R; Zhang S; Wu J; Liang Y; Gu C; Tu J
    Chemistry; 2017 Oct; 23(60):15203-15209. PubMed ID: 28875509
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Material and Structural Design of Novel Binder Systems for High-Energy, High-Power Lithium-Ion Batteries.
    Shi Y; Zhou X; Yu G
    Acc Chem Res; 2017 Nov; 50(11):2642-2652. PubMed ID: 28981258
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sodium Alginate Binders for Bivalency Aqueous Batteries.
    Ding Y; Zhong X; Yuan C; Duan L; Zhang L; Wang Z; Wang C; Shi F
    ACS Appl Mater Interfaces; 2021 May; 13(17):20681-20688. PubMed ID: 33886277
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.