BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 30540170)

  • 1. Fluorogenic "Photoclick" Labeling and Imaging of DNA with Coumarin-Fused Tetrazole in Vivo.
    Wu Y; Guo G; Zheng J; Xing D; Zhang T
    ACS Sens; 2019 Jan; 4(1):44-51. PubMed ID: 30540170
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluorogenic, two-photon-triggered photoclick chemistry in live mammalian cells.
    Yu Z; Ohulchanskyy TY; An P; Prasad PN; Lin Q
    J Am Chem Soc; 2013 Nov; 135(45):16766-9. PubMed ID: 24168622
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sterically shielded tetrazoles for a fluorogenic photoclick reaction: tuning cycloaddition rate and product fluorescence.
    An P; Lin Q
    Org Biomol Chem; 2018 Jul; 16(29):5241-5244. PubMed ID: 29995029
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved Photoinduced Fluorogenic Alkene-Tetrazole Reaction for Protein Labeling.
    Shang X; Lai R; Song X; Li H; Niu W; Guo J
    Bioconjug Chem; 2017 Nov; 28(11):2859-2864. PubMed ID: 29022697
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design and Synthesis of a BODIPY-Tetrazole Based "Off-On" in-Cell Fluorescence Reporter of Hydrogen Peroxide.
    An P; Lewandowski TM; Lin Q
    Chembiochem; 2018 Jun; 19(12):1326-1333. PubMed ID: 29385317
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tetrazole Photoclick Chemistry: Reinvestigating Its Suitability as a Bioorthogonal Reaction and Potential Applications.
    Li Z; Qian L; Li L; Bernhammer JC; Huynh HV; Lee JS; Yao SQ
    Angew Chem Int Ed Engl; 2016 Feb; 55(6):2002-6. PubMed ID: 26640085
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of surface immobilized 3-azidocoumarin-based fluorogenic probe via strain promoted click chemistry.
    Bharathi MV; Chhabra M; Paira P
    Bioorg Med Chem Lett; 2015 Dec; 25(24):5737-42. PubMed ID: 26531149
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photoactivatable Fluorogenic Azide-Alkyne Click Reaction: A Dual-Activation Fluorescent Probe.
    Xiao M; Zhang YK; Li R; Li S; Wang D; An P
    Chem Asian J; 2022 Sep; 17(17):e202200634. PubMed ID: 35819362
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid, photoactivatable turn-on fluorescent probes based on an intramolecular photoclick reaction.
    Yu Z; Ho LY; Lin Q
    J Am Chem Soc; 2011 Aug; 133(31):11912-5. PubMed ID: 21736329
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A lysosome-targeting and polarity-specific fluorescent probe for cancer diagnosis.
    Fan L; Wang X; Ge J; Li F; Wang X; Wang J; Shuang S; Dong C
    Chem Commun (Camb); 2019 Apr; 55(32):4703-4706. PubMed ID: 30942238
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of Fluorogenic Probes for Rapid High-Contrast Imaging of Transient Nuclear Localization of Sirtuin 3.
    Gao J; Hori Y; Shimomura T; Bordy M; Hasserodt J; Kikuchi K
    Chembiochem; 2020 Mar; 21(5):656-662. PubMed ID: 31518474
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Near-infrared light controlled fluorogenic labeling of glycoengineered sialic acids in vivo with upconverting photoclick nanoprobe.
    Wu Y; Zheng J; Xing D; Zhang T
    Nanoscale; 2020 May; 12(18):10361-10368. PubMed ID: 32369049
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluorogenic probes for mitochondria and lysosomes via intramolecular photoclick reaction.
    Liu S; Su H; Bu L; Yan J; Li G; Huang J
    Analyst; 2021 Feb; 146(4):1369-1375. PubMed ID: 33393557
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photoinducible bioorthogonal chemistry: a spatiotemporally controllable tool to visualize and perturb proteins in live cells.
    Lim RK; Lin Q
    Acc Chem Res; 2011 Sep; 44(9):828-39. PubMed ID: 21609129
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluorogenic "photoclick" labelling of DNA using a Cy3 dye.
    Lehmann B; Wagenknecht HA
    Org Biomol Chem; 2018 Nov; 16(41):7579-7582. PubMed ID: 30307458
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Trifunctional Fluorogenic Probes for Fluorescence Imaging and Isolation of Glycosidases in Cells.
    Hyun JY; Park SH; Park CW; Kim HB; Cho JW; Shin I
    Org Lett; 2019 Jun; 21(12):4439-4442. PubMed ID: 31045373
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Discovery of new photoactivatable diaryltetrazoles for photoclick chemistry via 'scaffold hopping'.
    Yu Z; Ho LY; Wang Z; Lin Q
    Bioorg Med Chem Lett; 2011 Sep; 21(17):5033-6. PubMed ID: 21570845
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design and synthesis of laser-activatable tetrazoles for a fast and fluorogenic red-emitting 1,3-dipolar cycloaddition reaction.
    An P; Yu Z; Lin Q
    Org Lett; 2013 Nov; 15(21):5496-9. PubMed ID: 24111736
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A multi-signal mitochondria-targeted fluorescent probe for real-time visualization of cysteine metabolism in living cells and animals.
    Yang X; Liu W; Tang J; Li P; Weng H; Ye Y; Xian M; Tang B; Zhao Y
    Chem Commun (Camb); 2018 Oct; 54(81):11387-11390. PubMed ID: 30191239
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lights on 2,5-diaryl tetrazoles: applications and limits of a versatile photoclick reaction.
    Pirota V; Benassi A; Doria F
    Photochem Photobiol Sci; 2022 May; 21(5):879-898. PubMed ID: 35188652
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.