BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

411 related articles for article (PubMed ID: 30540235)

  • 41. Acute hypoxia attenuates resistance exercise-induced ribosome signaling but does not impact satellite cell pool expansion in human skeletal muscle.
    Horwath O; Nordström F; von Walden F; Apró W; Moberg M
    FASEB J; 2023 Mar; 37(3):e22811. PubMed ID: 36786723
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Satellite cell and myonuclear accretion is related to training-induced skeletal muscle fiber hypertrophy in young males and females.
    Abou Sawan S; Hodson N; Babits P; Malowany JM; Kumbhare D; Moore DR
    J Appl Physiol (1985); 2021 Sep; 131(3):871-880. PubMed ID: 34264129
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Molecular Mechanisms of Skeletal Muscle Hypertrophy.
    Schiaffino S; Reggiani C; Akimoto T; Blaauw B
    J Neuromuscul Dis; 2021; 8(2):169-183. PubMed ID: 33216041
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Eukaryotic initiation factor 2B epsilon induces cap-dependent translation and skeletal muscle hypertrophy.
    Mayhew DL; Hornberger TA; Lincoln HC; Bamman MM
    J Physiol; 2011 Jun; 589(Pt 12):3023-37. PubMed ID: 21486778
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Transient activation of mTORC1 signaling in skeletal muscle is independent of Akt1 regulation.
    Miyazaki M; Moriya N; Takemasa T
    Physiol Rep; 2020 Oct; 8(19):e14599. PubMed ID: 33038070
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Ribosomal protein methyltransferases in the yeast Saccharomyces cerevisiae: Roles in ribosome biogenesis and translation.
    Al-Hadid Q; White J; Clarke S
    Biochem Biophys Res Commun; 2016 Feb; 470(3):552-557. PubMed ID: 26801560
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The role of mTOR signalling in the regulation of skeletal muscle mass in a rodent model of resistance exercise.
    Ogasawara R; Fujita S; Hornberger TA; Kitaoka Y; Makanae Y; Nakazato K; Naokata I
    Sci Rep; 2016 Aug; 6():31142. PubMed ID: 27502839
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Ribosome accumulation during early phase resistance training in humans.
    Hammarström D; Øfsteng SJ; Jacobsen NB; Flobergseter KB; Rønnestad BR; Ellefsen S
    Acta Physiol (Oxf); 2022 May; 235(1):e13806. PubMed ID: 35213791
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effect of dietary arachidonic acid supplementation on acute muscle adaptive responses to resistance exercise in trained men: a randomized controlled trial.
    Mitchell CJ; D'Souza RF; Figueiredo VC; Chan A; Aasen K; Durainayagam B; Mitchell S; Sinclair AJ; Egner IM; Raastad T; Cameron-Smith D; Markworth JF
    J Appl Physiol (1985); 2018 Apr; 124(4):1080-1091. PubMed ID: 29389245
    [TBL] [Abstract][Full Text] [Related]  

  • 50. mTOR signaling regulates myotube hypertrophy by modulating protein synthesis, rDNA transcription, and chromatin remodeling.
    von Walden F; Liu C; Aurigemma N; Nader GA
    Am J Physiol Cell Physiol; 2016 Oct; 311(4):C663-C672. PubMed ID: 27581648
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Repeated bouts of resistance exercise in rats alter mechanistic target of rapamycin complex 1 activity and ribosomal capacity but not muscle protein synthesis.
    Kotani T; Takegaki J; Tamura Y; Kouzaki K; Nakazato K; Ishii N
    Exp Physiol; 2021 Sep; 106(9):1950-1960. PubMed ID: 34197668
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Notchless defines a stage-specific requirement for ribosome biogenesis during lineage progression in adult skeletal myogenesis.
    Gayraud-Morel B; Le Bouteiller M; Commere PH; Cohen-Tannoudji M; Tajbakhsh S
    Development; 2018 Nov; 145(23):. PubMed ID: 30478226
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Translational signaling responses preceding resistance training-mediated myofiber hypertrophy in young and old humans.
    Mayhew DL; Kim JS; Cross JM; Ferrando AA; Bamman MM
    J Appl Physiol (1985); 2009 Nov; 107(5):1655-62. PubMed ID: 19589955
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Translational control: implications for skeletal muscle hypertrophy.
    Nader GA; Hornberger TA; Esser KA
    Clin Orthop Relat Res; 2002 Oct; (403 Suppl):S178-87. PubMed ID: 12394467
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Specialized ribosomes and the control of translation.
    Guo H
    Biochem Soc Trans; 2018 Aug; 46(4):855-869. PubMed ID: 29986937
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Resistance exercise training promotes fiber type-specific myonuclear adaptations in older adults.
    Moro T; Brightwell CR; Volpi E; Rasmussen BB; Fry CS
    J Appl Physiol (1985); 2020 Apr; 128(4):795-804. PubMed ID: 32134710
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Exercise type and volume alter signaling pathways regulating skeletal muscle glucose uptake and protein synthesis.
    Ahtiainen JP; Walker S; Silvennoinen M; Kyröläinen H; Nindl BC; Häkkinen K; Nyman K; Selänne H; Hulmi JJ
    Eur J Appl Physiol; 2015 Sep; 115(9):1835-45. PubMed ID: 25861013
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Short inter-set rest blunts resistance exercise-induced increases in myofibrillar protein synthesis and intracellular signalling in young males.
    McKendry J; Pérez-López A; McLeod M; Luo D; Dent JR; Smeuninx B; Yu J; Taylor AE; Philp A; Breen L
    Exp Physiol; 2016 Jul; 101(7):866-82. PubMed ID: 27126459
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Protein Elongation, Co-translational Folding and Targeting.
    Rodnina MV; Wintermeyer W
    J Mol Biol; 2016 May; 428(10 Pt B):2165-85. PubMed ID: 27038507
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Role of amino acids and peptides in the molecular signaling in skeletal muscle after resistance exercise.
    Koopman R
    Int J Sport Nutr Exerc Metab; 2007 Aug; 17 Suppl():S47-57. PubMed ID: 18577774
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.