These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

412 related articles for article (PubMed ID: 30540235)

  • 61. [Impacts of physical exercise on remodeling and hypertrophy of skeletal muscle.].
    Sakashita Y; Uchida T; Nikawa T
    Clin Calcium; 2017; 27(1):79-85. PubMed ID: 28017949
    [TBL] [Abstract][Full Text] [Related]  

  • 62. RNA helicase, DDX27 regulates skeletal muscle growth and regeneration by modulation of translational processes.
    Bennett AH; O'Donohue MF; Gundry SR; Chan AT; Widrick J; Draper I; Chakraborty A; Zhou Y; Zon LI; Gleizes PE; Beggs AH; Gupta VA
    PLoS Genet; 2018 Mar; 14(3):e1007226. PubMed ID: 29518074
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Low-load blood flow-restricted resistance exercise produces fiber type-independent hypertrophy and improves muscle functional capacity in older individuals.
    Wang J; Mogensen AG; Thybo F; Brandbyge M; Brorson J; van Hall G; Agergaard J; de Paoli FV; Miller BF; Bøtker HE; Farup J; Vissing K
    J Appl Physiol (1985); 2023 Apr; 134(4):1047-1062. PubMed ID: 36825645
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Leucine Differentially Regulates Gene-Specific Translation in Mouse Skeletal Muscle.
    Drummond MJ; Reidy PT; Baird LM; Dalley BK; Howard MT
    J Nutr; 2017 Sep; 147(9):1616-1623. PubMed ID: 28615380
    [No Abstract]   [Full Text] [Related]  

  • 65. Role of satellite cells in muscle growth and maintenance of muscle mass.
    Pallafacchina G; Blaauw B; Schiaffino S
    Nutr Metab Cardiovasc Dis; 2013 Dec; 23 Suppl 1():S12-8. PubMed ID: 22621743
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Exercise and the Regulation of Skeletal Muscle Hypertrophy.
    McGlory C; Phillips SM
    Prog Mol Biol Transl Sci; 2015; 135():153-73. PubMed ID: 26477914
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Influence of oestrogen on satellite cells and myonuclear domain size in skeletal muscles following resistance exercise.
    Hung YL; Sato A; Takino Y; Ishigami A; Machida S
    J Cachexia Sarcopenia Muscle; 2022 Oct; 13(5):2525-2536. PubMed ID: 35818664
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Muscle atrophy and hypertrophy signaling pathways in COPD: a role in muscle remodeling?
    Langen RC; Schols AM
    Am J Respir Crit Care Med; 2008 Jan; 177(1):122; author reply 122-3. PubMed ID: 18096714
    [No Abstract]   [Full Text] [Related]  

  • 69. Molecular Regulation of Exercise-Induced Muscle Fiber Hypertrophy.
    Bamman MM; Roberts BM; Adams GR
    Cold Spring Harb Perspect Med; 2018 Jun; 8(6):. PubMed ID: 28490543
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Ribosome biogenesis surveillance: probing the ribosomal protein-Mdm2-p53 pathway.
    Deisenroth C; Zhang Y
    Oncogene; 2010 Jul; 29(30):4253-60. PubMed ID: 20498634
    [TBL] [Abstract][Full Text] [Related]  

  • 71. A liaison between mTOR signaling, ribosome biogenesis and cancer.
    Gentilella A; Kozma SC; Thomas G
    Biochim Biophys Acta; 2015 Jul; 1849(7):812-20. PubMed ID: 25735853
    [TBL] [Abstract][Full Text] [Related]  

  • 72. [Molecular mechanisms of skeletal muscle hypertrophy].
    Astratenkova IV; Rogozkin VA
    Ross Fiziol Zh Im I M Sechenova; 2014 Jun; 100(6):649-69. PubMed ID: 25665392
    [TBL] [Abstract][Full Text] [Related]  

  • 73. The role of mTOR signaling in the regulation of protein synthesis and muscle mass during immobilization in mice.
    You JS; Anderson GB; Dooley MS; Hornberger TA
    Dis Model Mech; 2015 Sep; 8(9):1059-69. PubMed ID: 26092121
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Exercise and the control of muscle mass in human.
    Francaux M; Deldicque L
    Pflugers Arch; 2019 Mar; 471(3):397-411. PubMed ID: 30310991
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Making Sense of Muscle Protein Synthesis: A Focus on Muscle Growth During Resistance Training.
    Witard OC; Bannock L; Tipton KD
    Int J Sport Nutr Exerc Metab; 2022 Jan; 32(1):49-61. PubMed ID: 34697259
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Mechanisms of exercise as a preventative measure to muscle wasting.
    Graham ZA; Lavin KM; O'Bryan SM; Thalacker-Mercer AE; Buford TW; Ford KM; Broderick TJ; Bamman MM
    Am J Physiol Cell Physiol; 2021 Jul; 321(1):C40-C57. PubMed ID: 33950699
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Inhibition of mTORC1 differentially affects ribosome biogenesis in rat soleus muscle at the early and later stages of hindlimb unloading.
    Rozhkov SV; Sharlo KA; Shenkman BS; Mirzoev TM
    Arch Biochem Biophys; 2022 Nov; 730():109411. PubMed ID: 36155780
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Intermittent bolus feeding does not enhance protein synthesis, myonuclear accretion, or lean growth more than continuous feeding in a premature piglet model.
    Rudar M; Naberhuis JK; Suryawan A; Nguyen HV; Stoll B; Style CC; Verla MA; Olutoye OO; Burrin DG; Fiorotto ML; Davis TA
    Am J Physiol Endocrinol Metab; 2021 Dec; 321(6):E737-E752. PubMed ID: 34719946
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Changes in myonuclear domain size do not precede muscle hypertrophy during prolonged resistance-type exercise training.
    Snijders T; Smeets JS; van Kranenburg J; Kies AK; van Loon LJ; Verdijk LB
    Acta Physiol (Oxf); 2016 Feb; 216(2):231-9. PubMed ID: 26407634
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Acute post-exercise myofibrillar protein synthesis is not correlated with resistance training-induced muscle hypertrophy in young men.
    Mitchell CJ; Churchward-Venne TA; Parise G; Bellamy L; Baker SK; Smith K; Atherton PJ; Phillips SM
    PLoS One; 2014; 9(2):e89431. PubMed ID: 24586775
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.