These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

408 related articles for article (PubMed ID: 30540235)

  • 81. Acute post-exercise myofibrillar protein synthesis is not correlated with resistance training-induced muscle hypertrophy in young men.
    Mitchell CJ; Churchward-Venne TA; Parise G; Bellamy L; Baker SK; Smith K; Atherton PJ; Phillips SM
    PLoS One; 2014; 9(2):e89431. PubMed ID: 24586775
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Ribosome function: governing the fate of a nascent polypeptide.
    Rospert S
    Curr Biol; 2004 May; 14(10):R386-8. PubMed ID: 15186764
    [TBL] [Abstract][Full Text] [Related]  

  • 83. MYC as a regulator of ribosome biogenesis and protein synthesis.
    van Riggelen J; Yetil A; Felsher DW
    Nat Rev Cancer; 2010 Apr; 10(4):301-9. PubMed ID: 20332779
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Type 2 diabetes causes skeletal muscle atrophy but does not impair resistance training-mediated myonuclear accretion and muscle mass gain in rats.
    Ato S; Kido K; Sato K; Fujita S
    Exp Physiol; 2019 Oct; 104(10):1518-1531. PubMed ID: 31328833
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Sepsis and development impede muscle protein synthesis in neonatal pigs by different ribosomal mechanisms.
    Orellana RA; Wilson FA; Gazzaneo MC; Suryawan A; Davis TA; Nguyen HV
    Pediatr Res; 2011 Jun; 69(6):473-8. PubMed ID: 21364490
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Activation of the tumor suppressor p53 upon impairment of ribosome biogenesis.
    Bursac S; Brdovcak MC; Donati G; Volarevic S
    Biochim Biophys Acta; 2014 Jun; 1842(6):817-30. PubMed ID: 24514102
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Anabolic processes in human skeletal muscle: restoring the identities of growth hormone and testosterone.
    West DW; Phillips SM
    Phys Sportsmed; 2010 Oct; 38(3):97-104. PubMed ID: 20959702
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Translational control of stem cell function.
    Saba JA; Liakath-Ali K; Green R; Watt FM
    Nat Rev Mol Cell Biol; 2021 Oct; 22(10):671-690. PubMed ID: 34272502
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Skeletal muscle plasticity induced by seasonal acclimatization involves IGF1 signaling: implications in ribosomal biogenesis and protein synthesis.
    Fuentes EN; Zuloaga R; Valdes JA; Molina A; Alvarez M
    Comp Biochem Physiol B Biochem Mol Biol; 2014 Oct; 176():48-57. PubMed ID: 25088252
    [TBL] [Abstract][Full Text] [Related]  

  • 90. The Akt of translational control.
    Ruggero D; Sonenberg N
    Oncogene; 2005 Nov; 24(50):7426-34. PubMed ID: 16288289
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Effect of endurance exercise duration on muscle hypertrophy induced by functional overload.
    Shirai T; Obara T; Takemasa T
    FEBS Open Bio; 2021 Jan; 11(1):85-94. PubMed ID: 33155405
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Regulation of Protein Synthesis in Inactivated Skeletal Muscle: Signal Inputs, Protein Kinase Cascades, and Ribosome Biogenesis.
    Mirzoev TM; Shenkman BS
    Biochemistry (Mosc); 2018 Nov; 83(11):1299-1317. PubMed ID: 30482143
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Protein Supplementation Augments Muscle Fiber Hypertrophy but Does Not Modulate Satellite Cell Content During Prolonged Resistance-Type Exercise Training in Frail Elderly.
    Dirks ML; Tieland M; Verdijk LB; Losen M; Nilwik R; Mensink M; de Groot LCPGM; van Loon LJC
    J Am Med Dir Assoc; 2017 Jul; 18(7):608-615. PubMed ID: 28377156
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Bacterial stress defense: the crucial role of ribosome speed.
    Zhu M; Dai X
    Cell Mol Life Sci; 2020 Mar; 77(5):853-858. PubMed ID: 31552449
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Beta
    Hostrup M; Reitelseder S; Jessen S; Kalsen A; Nyberg M; Egelund J; Kreiberg M; Kristensen CM; Thomassen M; Pilegaard H; Backer V; Jacobson GA; Holm L; Bangsbo J
    J Physiol; 2018 Sep; 596(17):4121-4139. PubMed ID: 29968301
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Effects of training, detraining, and retraining on strength, hypertrophy, and myonuclear number in human skeletal muscle.
    Psilander N; Eftestøl E; Cumming KT; Juvkam I; Ekblom MM; Sunding K; Wernbom M; Holmberg HC; Ekblom B; Bruusgaard JC; Raastad T; Gundersen K
    J Appl Physiol (1985); 2019 Jun; 126(6):1636-1645. PubMed ID: 30991013
    [TBL] [Abstract][Full Text] [Related]  

  • 97. How many times per week should a muscle be trained to maximize muscle hypertrophy? A systematic review and meta-analysis of studies examining the effects of resistance training frequency.
    Schoenfeld BJ; Grgic J; Krieger J
    J Sports Sci; 2019 Jun; 37(11):1286-1295. PubMed ID: 30558493
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Ribosome specialization and its potential role in the control of protein translation and skeletal muscle size.
    Chaillou T
    J Appl Physiol (1985); 2019 Aug; 127(2):599-607. PubMed ID: 30605395
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Regulation of Ribosome Biogenesis During Skeletal Muscle Hypertrophy.
    Kim HG; Guo B; Nader GA
    Exerc Sport Sci Rev; 2019 Apr; 47(2):91-97. PubMed ID: 30632998
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Carbohydrate restriction: Friend or foe of resistance-based exercise performance?
    Cholewa JM; Newmire DE; Zanchi NE
    Nutrition; 2019 Apr; 60():136-146. PubMed ID: 30586657
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.