These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 30540800)

  • 1. Gene expression is implicated in the ability of pikas to occupy Himalayan elevational gradient.
    Solari KA; Ramakrishnan U; Hadly EA
    PLoS One; 2018; 13(12):e0207936. PubMed ID: 30540800
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental study of hypoxia-induced changes in gene expression in an Asian pika, Ochotona dauurica.
    Solari KA; Hadly EA
    PLoS One; 2020; 15(10):e0240435. PubMed ID: 33044983
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolution for extreme living: variation in mitochondrial cytochrome c oxidase genes correlated with elevation in pikas (genus Ochotona).
    Solari KA; Hadly EA
    Integr Zool; 2018 Sep; 13(5):517-535. PubMed ID: 29851233
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of inducible nitric oxide synthase expression and nitric oxide production in plateau pika (Ochotona curzoniae) at high altitude on Qinghai-Tibet Plateau.
    Xie L; Zhang X; Qi D; Guo X; Pang B; Du Y; Zou X; Guo S; Zhao X
    Nitric Oxide; 2014 Apr; 38():38-44. PubMed ID: 24632467
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adaptive population divergence and directional gene flow across steep elevational gradients in a climate-sensitive mammal.
    Waterhouse MD; Erb LP; Beever EA; Russello MA
    Mol Ecol; 2018 Jun; 27(11):2512-2528. PubMed ID: 29693300
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A diet rich in C
    Bhattacharyya S; Dawson DA; Hipperson H; Ishtiaq F
    Mol Ecol; 2019 Jan; 28(2):250-265. PubMed ID: 30136323
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Factors influencing distributional shifts and abundance at the range core of a climate-sensitive mammal.
    Billman PD; Beever EA; McWethy DB; Thurman LL; Wilson KC
    Glob Chang Biol; 2021 Oct; 27(19):4498-4515. PubMed ID: 34236759
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel genomic resources for a climate change sensitive mammal: characterization of the American pika transcriptome.
    Lemay MA; Henry P; Lamb CT; Robson KM; Russello MA
    BMC Genomics; 2013 May; 14():311. PubMed ID: 23663654
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Leptin cDNA cloning and its mRNA expression in plateau pikas (Ochotona curzoniae) from different altitudes on Qinghai-Tibet Plateau.
    Yang J; Zhao XQ; Guo SC; Li HG; Qi DL; Wang DP; Cao JH
    Biochem Biophys Res Commun; 2006 Jul; 345(4):1405-13. PubMed ID: 16730654
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Testing alternative models of climate-mediated extirpations.
    Beever EA; Ray C; Mote PW; Wilkening JL
    Ecol Appl; 2010 Jan; 20(1):164-78. PubMed ID: 20349838
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolutionary Genetics of Hypoxia and Cold Tolerance in Mammals.
    Zhu K; Ge D; Wen Z; Xia L; Yang Q
    J Mol Evol; 2018 Dec; 86(9):618-634. PubMed ID: 30327830
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of Hypoxia on Ldh-c Expression in Somatic Cells of Plateau Pika.
    Wei D; Wei L; Li X; Wang Y; Wei L
    Int J Environ Res Public Health; 2016 Aug; 13(8):. PubMed ID: 27490559
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lung transcriptome analysis for the identification of genes involved in the hypoxic adaptation of plateau pika (Ochotona curzoniae).
    Zhang XZ; Fu L; Zou XY; Li S; Ma XD; Xie L; Pang B; Ma JB; Wang YJ; Du YR; Guo SC
    Comp Biochem Physiol Part D Genomics Proteomics; 2022 Mar; 41():100943. PubMed ID: 34861554
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Noninvasive sampling reveals population genetic structure in the Royle's pika,
    Bhattacharyya S; Ishtiaq F
    Ecol Evol; 2019 Jan; 9(1):180-191. PubMed ID: 30680105
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Replicated landscape genetic and network analyses reveal wide variation in functional connectivity for American pikas.
    Castillo JA; Epps CW; Jeffress MR; Ray C; Rodhouse TJ; Schwalm D
    Ecol Appl; 2016 Sep; 26(6):1660-1676. PubMed ID: 27755691
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic Alterations of Qinghai-Tibet Plateau Pikas in Adaptation to High Altitude.
    Cao XF; Bai ZZ; Ma L; Ma S; Ge RL
    High Alt Med Biol; 2017 Sep; 18(3):219-225. PubMed ID: 28846033
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Out of Tibet: Genomic Perspectives on the Evolutionary History of Extant Pikas.
    Wang X; Liang D; Jin W; Tang M; Liu S; Zhang P
    Mol Biol Evol; 2020 Jun; 37(6):1577-1592. PubMed ID: 32027372
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Colonization from divergent ancestors: glaciation signatures on contemporary patterns of genomic variation in Collared Pikas (Ochotona collaris).
    Lanier HC; Massatti R; He Q; Olson LE; Knowles LL
    Mol Ecol; 2015 Jul; 24(14):3688-705. PubMed ID: 26096099
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome-wide analysis reveals associations between climate and regional patterns of adaptive divergence and dispersal in American pikas.
    Schmidt DA; Waterhouse MD; Sjodin BMF; Russello MA
    Heredity (Edinb); 2021 Nov; 127(5):443-454. PubMed ID: 34537819
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the generality of a climate-mediated shift in the distribution of the American pika (Ochotona princeps).
    Erb LP; Ray C; Guralnick R
    Ecology; 2011 Sep; 92(9):1730-5. PubMed ID: 21939069
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.