These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 30540871)

  • 1. Common Terminology and Acoustic Measures for Human Voice and Birdsong.
    Badwal A; Poertner J; Samlan RA; Miller JE
    J Speech Lang Hear Res; 2019 Jan; 62(1):60-69. PubMed ID: 30540871
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Comparison of Cepstral Peak Prominence Measures From Two Acoustic Analysis Programs.
    Watts CR; Awan SN; Maryn Y
    J Voice; 2017 May; 31(3):387.e1-387.e10. PubMed ID: 27751661
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sound properties affect measurement of vocal consistency in birdsong: Validation of the spectrogram cross correlation method (SPCC).
    Sierro J; de Kort SR; Hartley IR
    J Acoust Soc Am; 2023 Aug; 154(2):699-708. PubMed ID: 37550240
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting Voice Disorder Status From Smoothed Measures of Cepstral Peak Prominence Using Praat and Analysis of Dysphonia in Speech and Voice (ADSV).
    Sauder C; Bretl M; Eadie T
    J Voice; 2017 Sep; 31(5):557-566. PubMed ID: 28169094
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cepstral analysis of hypokinetic and ataxic voices: correlations with perceptual and other acoustic measures.
    Jannetts S; Lowit A
    J Voice; 2014 Nov; 28(6):673-80. PubMed ID: 24836365
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of cepstral analysis for differentiating dysphonic from normal voices in children.
    Esen Aydinli F; Özcebe E; İncebay Ö
    Int J Pediatr Otorhinolaryngol; 2019 Jan; 116():107-113. PubMed ID: 30554679
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploring the relationship between spectral and cepstral measures of voice and the Voice Handicap Index (VHI).
    Awan SN; Roy N; Cohen SM
    J Voice; 2014 Jul; 28(4):430-9. PubMed ID: 24698884
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acoustic and Perceptual Classification of Within-sample Normal, Intermittently Dysphonic, and Consistently Dysphonic Voice Types.
    Gaskill CS; Awan JA; Watts CR; Awan SN
    J Voice; 2017 Mar; 31(2):218-228. PubMed ID: 27241579
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predictive value and discriminant capacity of cepstral- and spectral-based measures during continuous speech.
    Lowell SY; Colton RH; Kelley RT; Mizia SA
    J Voice; 2013 Jul; 27(4):393-400. PubMed ID: 23684735
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Brains for birds and babies: Neural parallels between birdsong and speech acquisition.
    Prather JF; Okanoya K; Bolhuis JJ
    Neurosci Biobehav Rev; 2017 Oct; 81(Pt B):225-237. PubMed ID: 28087242
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cues for auditory stream segregation of birdsong in budgerigars and zebra finches: Effects of location, timing, amplitude, and frequency.
    Dent ML; Martin AK; Flaherty MM; Neilans EG
    J Acoust Soc Am; 2016 Feb; 139(2):674-83. PubMed ID: 26936551
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Learning Biases Underlie "Universals" in Avian Vocal Sequencing.
    James LS; Sakata JT
    Curr Biol; 2017 Dec; 27(23):3676-3682.e4. PubMed ID: 29174890
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Middle age, a key time point for changes in birdsong and human voice.
    Badwal A; Borgstrom M; Samlan RA; Miller JE
    Behav Neurosci; 2020 Jun; 134(3):208-221. PubMed ID: 32162938
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Effects of Pitch Shifts on Delay-Induced Changes in Vocal Sequencing in a Songbird.
    Wyatt M; Berthiaume EA; Kelly CW; Sober SJ
    eNeuro; 2017; 4(1):. PubMed ID: 28144622
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prosody in birdsong: A review and perspective.
    Mol C; Chen A; Kager RWJ; Ter Haar SM
    Neurosci Biobehav Rev; 2017 Oct; 81(Pt B):167-180. PubMed ID: 28232050
    [TBL] [Abstract][Full Text] [Related]  

  • 16. From central pattern generator to sensory template in the evolution of birdsong.
    Konishi M
    Brain Lang; 2010 Oct; 115(1):18-20. PubMed ID: 20955898
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acoustic analyses of thyroidectomy-related changes in vowel phonation.
    Solomon NP; Awan SN; Helou LB; Stojadinovic A
    J Voice; 2012 Nov; 26(6):711-20. PubMed ID: 23177742
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of Dermatoglyphic Profiles and its Relation to Acoustic Measures in Voice Professionals.
    Santana ÉR; Oliveira P; Magacho-Coelho C; Lopes L; Sacramento LSC
    J Voice; 2023 Nov; 37(6):967.e1-967.e7. PubMed ID: 34256980
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aerodynamic and acoustic features of vocal effort.
    Rosenthal AL; Lowell SY; Colton RH
    J Voice; 2014 Mar; 28(2):144-53. PubMed ID: 24412040
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relative salience of syllable structure and syllable order in zebra finch song.
    Lawson SL; Fishbein AR; Prior NH; Ball GF; Dooling RJ
    Anim Cogn; 2018 Jul; 21(4):467-480. PubMed ID: 29766379
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.