BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

381 related articles for article (PubMed ID: 30541374)

  • 1. Rapamycin, proliferation and geroconversion to senescence.
    Blagosklonny MV
    Cell Cycle; 2018; 17(24):2655-2665. PubMed ID: 30541374
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CDK4/6-inhibiting drug substitutes for p21 and p16 in senescence: duration of cell cycle arrest and MTOR activity determine geroconversion.
    Leontieva OV; Blagosklonny MV
    Cell Cycle; 2013 Sep; 12(18):3063-9. PubMed ID: 23974099
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dual mTORC1/C2 inhibitors suppress cellular geroconversion (a senescence program).
    Leontieva OV; Demidenko ZN; Blagosklonny MV
    Oncotarget; 2015 Sep; 6(27):23238-48. PubMed ID: 26177051
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MEK drives cyclin D1 hyperelevation during geroconversion.
    Leontieva OV; Demidenko ZN; Blagosklonny MV
    Cell Death Differ; 2013 Sep; 20(9):1241-9. PubMed ID: 23852369
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tumor promoter-induced cellular senescence: cell cycle arrest followed by geroconversion.
    Leontieva OV; Blagosklonny MV
    Oncotarget; 2014 Dec; 5(24):12715-27. PubMed ID: 25587030
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cell cycle arrest is not yet senescence, which is not just cell cycle arrest: terminology for TOR-driven aging.
    Blagosklonny MV
    Aging (Albany NY); 2012 Mar; 4(3):159-65. PubMed ID: 22394614
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapamycin inhibits the secretory phenotype of senescent cells by a Nrf2-independent mechanism.
    Wang R; Yu Z; Sunchu B; Shoaf J; Dang I; Zhao S; Caples K; Bradley L; Beaver LM; Ho E; Löhr CV; Perez VI
    Aging Cell; 2017 Jun; 16(3):564-574. PubMed ID: 28371119
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cell senescence, rapamycin and hyperfunction theory of aging.
    Blagosklonny MV
    Cell Cycle; 2022 Jul; 21(14):1456-1467. PubMed ID: 35358003
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hypoxia suppresses conversion from proliferative arrest to cellular senescence.
    Leontieva OV; Natarajan V; Demidenko ZN; Burdelya LG; Gudkov AV; Blagosklonny MV
    Proc Natl Acad Sci U S A; 2012 Aug; 109(33):13314-8. PubMed ID: 22847439
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gerosuppression in confluent cells.
    Leontieva OV; Blagosklonny MV
    Aging (Albany NY); 2014 Dec; 6(12):1010-8. PubMed ID: 25585637
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hypoxia and gerosuppression: the mTOR saga continues.
    Leontieva OV; Blagosklonny MV
    Cell Cycle; 2012 Nov; 11(21):3926-31. PubMed ID: 22987149
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gerosuppression by pan-mTOR inhibitors.
    Leontieva OV; Blagosklonny MV
    Aging (Albany NY); 2016 Dec; 8(12):3535-3551. PubMed ID: 28077803
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DNA damaging agents and p53 do not cause senescence in quiescent cells, while consecutive re-activation of mTOR is associated with conversion to senescence.
    Leontieva OV; Blagosklonny MV
    Aging (Albany NY); 2010 Dec; 2(12):924-35. PubMed ID: 21212465
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced expression of glucose transporter-1 in vascular smooth muscle cells via the Akt/tuberous sclerosis complex subunit 2 (TSC2)/mammalian target of rapamycin (mTOR)/ribosomal S6 protein kinase (S6K) pathway in experimental renal failure.
    Lin CY; Hsu SC; Lee HS; Lin SH; Tsai CS; Huang SM; Shih CC; Hsu YJ
    J Vasc Surg; 2013 Feb; 57(2):475-85. PubMed ID: 23265586
    [TBL] [Abstract][Full Text] [Related]  

  • 15. S6K in geroconversion.
    Leontieva OV; Demidenko ZN; Blagosklonny MV
    Cell Cycle; 2013 Oct; 12(20):3249-52. PubMed ID: 24036549
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The power of chemotherapeutic engineering: arresting cell cycle and suppressing senescence to protect from mitotic inhibitors.
    Blagosklonny MV
    Cell Cycle; 2011 Jul; 10(14):2295-8. PubMed ID: 21715978
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Endothelial replicative senescence delayed by the inhibition of MTORC1 signaling involves MicroRNA-107.
    Khor ES; Wong PF
    Int J Biochem Cell Biol; 2018 Aug; 101():64-73. PubMed ID: 29857052
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapamycin decelerates cellular senescence.
    Demidenko ZN; Zubova SG; Bukreeva EI; Pospelov VA; Pospelova TV; Blagosklonny MV
    Cell Cycle; 2009 Jun; 8(12):1888-95. PubMed ID: 19471117
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Growth stimulation leads to cellular senescence when the cell cycle is blocked.
    Demidenko ZN; Blagosklonny MV
    Cell Cycle; 2008 Nov; 7(21):3355-61. PubMed ID: 18948731
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantifying pharmacologic suppression of cellular senescence: prevention of cellular hypertrophy versus preservation of proliferative potential.
    Demidenko ZN; Blagosklonny MV
    Aging (Albany NY); 2009 Dec; 1(12):1008-16. PubMed ID: 20157583
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.