These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Effects of Robotic Exoskeleton-Aided Gait Training in the Strength, Body Balance, and Walking Speed in Individuals With Multiple Sclerosis: A Single-Group Preliminary Study. Drużbicki M; Guzik A; Przysada G; Phd LP; Brzozowska-Magoń A; Cygoń K; Boczula G; Bartosik-Psujek H Arch Phys Med Rehabil; 2021 Feb; 102(2):175-184. PubMed ID: 33181115 [TBL] [Abstract][Full Text] [Related]
5. Overground Robotic Program Preserves Gait in Individuals With Multiple Sclerosis and Moderate to Severe Impairments: A Randomized Controlled Trial. Berriozabalgoitia R; Bidaurrazaga-Letona I; Otxoa E; Urquiza M; Irazusta J; Rodriguez-Larrad A Arch Phys Med Rehabil; 2021 May; 102(5):932-939. PubMed ID: 33316225 [TBL] [Abstract][Full Text] [Related]
6. Feasibility and Safety of a Powered Exoskeleton for Assisted Walking for Persons With Multiple Sclerosis: A Single-Group Preliminary Study. Kozlowski AJ; Fabian M; Lad D; Delgado AD Arch Phys Med Rehabil; 2017 Jul; 98(7):1300-1307. PubMed ID: 28315666 [TBL] [Abstract][Full Text] [Related]
7. Effects of a home-based step training programme on balance, stepping, cognition and functional performance in people with multiple sclerosis--a randomized controlled trial. Hoang P; Schoene D; Gandevia S; Smith S; Lord SR Mult Scler; 2016 Jan; 22(1):94-103. PubMed ID: 25921035 [TBL] [Abstract][Full Text] [Related]
8. Effect of wearing a dorsiflexion assist orthosis on mobility, perceived fatigue and exertion during the six-minute walk test in people with multiple sclerosis: a randomised cross-over protocol. McLoughlin J; Barr C; Sturnieks D; Lord S; Crotty M BMC Neurol; 2012 May; 12():27. PubMed ID: 22625433 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of the Keeogo™ Dermoskeleton. Mcleod JC; Ward SJ; Hicks AL Disabil Rehabil Assist Technol; 2019 Jul; 14(5):503-512. PubMed ID: 29092649 [No Abstract] [Full Text] [Related]
10. A pilot randomized controlled trial of robotic exoskeleton-assisted exercise rehabilitation in multiple sclerosis. Androwis GJ; Sandroff BM; Niewrzol P; Fakhoury F; Wylie GR; Yue G; DeLuca J Mult Scler Relat Disord; 2021 Jun; 51():102936. PubMed ID: 33878619 [TBL] [Abstract][Full Text] [Related]
11. Exoskeleton-assisted Gait Training in Persons With Multiple Sclerosis: A Single-Group Pilot Study. Afzal T; Tseng SC; Lincoln JA; Kern M; Francisco GE; Chang SH Arch Phys Med Rehabil; 2020 Apr; 101(4):599-606. PubMed ID: 31821798 [TBL] [Abstract][Full Text] [Related]
12. The Kickstart Walk Assist System for improving balance and walking function in stroke survivors: a feasibility study. Yao J; Sado T; Wang W; Gao J; Zhao Y; Qi Q; Mukherjee M J Neuroeng Rehabil; 2021 Feb; 18(1):42. PubMed ID: 33627142 [TBL] [Abstract][Full Text] [Related]
13. The effects of robot-assisted gait training in progressive multiple sclerosis: A randomized controlled trial. Straudi S; Fanciullacci C; Martinuzzi C; Pavarelli C; Rossi B; Chisari C; Basaglia N Mult Scler; 2016 Mar; 22(3):373-84. PubMed ID: 26658817 [TBL] [Abstract][Full Text] [Related]
14. Effects of a wearable exoskeleton stride management assist system (SMA®) on spatiotemporal gait characteristics in individuals after stroke: a randomized controlled trial. Buesing C; Fisch G; O'Donnell M; Shahidi I; Thomas L; Mummidisetty CK; Williams KJ; Takahashi H; Rymer WZ; Jayaraman A J Neuroeng Rehabil; 2015 Aug; 12():69. PubMed ID: 26289955 [TBL] [Abstract][Full Text] [Related]
15. The effects of gait training using powered lower limb exoskeleton robot on individuals with complete spinal cord injury. Wu CH; Mao HF; Hu JS; Wang TY; Tsai YJ; Hsu WL J Neuroeng Rehabil; 2018 Mar; 15(1):14. PubMed ID: 29506530 [TBL] [Abstract][Full Text] [Related]
16. Can powered exoskeletons improve gait and balance in multiple sclerosis? A retrospective study. Russo M; Maggio MG; Naro A; Portaro S; Porcari B; Balletta T; De Luca R; Raciti L; Calabrò RS Int J Rehabil Res; 2021 Jun; 44(2):126-130. PubMed ID: 33534272 [TBL] [Abstract][Full Text] [Related]
17. A new lower limb portable exoskeleton for gait assistance in neurological patients: a proof of concept study. Puyuelo-Quintana G; Cano-de-la-Cuerda R; Plaza-Flores A; Garces-Castellote E; Sanz-Merodio D; Goñi-Arana A; Marín-Ojea J; García-Armada E J Neuroeng Rehabil; 2020 May; 17(1):60. PubMed ID: 32375815 [TBL] [Abstract][Full Text] [Related]
18. Does robot-assisted gait training ameliorate gait abnormalities in multiple sclerosis? A pilot randomized-control trial. Straudi S; Benedetti MG; Venturini E; Manca M; Foti C; Basaglia N NeuroRehabilitation; 2013; 33(4):555-63. PubMed ID: 24018369 [TBL] [Abstract][Full Text] [Related]
19. The effect of exercise training in adults with multiple sclerosis with severe mobility disability: A systematic review and future research directions. Edwards T; Pilutti LA Mult Scler Relat Disord; 2017 Aug; 16():31-39. PubMed ID: 28755682 [TBL] [Abstract][Full Text] [Related]
20. A task-oriented circuit training in multiple sclerosis: a feasibility study. Straudi S; Martinuzzi C; Pavarelli C; Sabbagh Charabati A; Benedetti MG; Foti C; Bonato M; Zancato E; Basaglia N BMC Neurol; 2014 Jun; 14():124. PubMed ID: 24906545 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]