BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 30541913)

  • 1. A Brainstem Neural Substrate for Stopping Locomotion.
    Grätsch S; Auclair F; Demers O; Auguste E; Hanna A; Büschges A; Dubuc R
    J Neurosci; 2019 Feb; 39(6):1044-1057. PubMed ID: 30541913
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Initiation of locomotion in lampreys.
    Dubuc R; Brocard F; Antri M; Fénelon K; Gariépy JF; Smetana R; Ménard A; Le Ray D; Viana Di Prisco G; Pearlstein E; Sirota MG; Derjean D; St-Pierre M; Zielinski B; Auclair F; Veilleux D
    Brain Res Rev; 2008 Jan; 57(1):172-82. PubMed ID: 17916380
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chapter 4--supraspinal control of locomotion: the mesencephalic locomotor region.
    Le Ray D; Juvin L; Ryczko D; Dubuc R
    Prog Brain Res; 2011; 188():51-70. PubMed ID: 21333802
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nigral Glutamatergic Neurons Control the Speed of Locomotion.
    Ryczko D; Grätsch S; Schläger L; Keuyalian A; Boukhatem Z; Garcia C; Auclair F; Büschges A; Dubuc R
    J Neurosci; 2017 Oct; 37(40):9759-9770. PubMed ID: 28924005
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A parallel cholinergic brainstem pathway for enhancing locomotor drive.
    Smetana R; Juvin L; Dubuc R; Alford S
    Nat Neurosci; 2010 Jun; 13(6):731-8. PubMed ID: 20473293
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Descending Dopaminergic Inputs to Reticulospinal Neurons Promote Locomotor Movements.
    Ryczko D; Grätsch S; Alpert MH; Cone JJ; Kasemir J; Ruthe A; Beauséjour PA; Auclair F; Roitman MF; Alford S; Dubuc R
    J Neurosci; 2020 Oct; 40(44):8478-8490. PubMed ID: 32998974
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nicotinic activation of reticulospinal cells involved in the control of swimming in lampreys.
    Le Ray D; Brocard F; Bourcier-Lucas C; Auclair F; Lafaille P; Dubuc R
    Eur J Neurosci; 2003 Jan; 17(1):137-48. PubMed ID: 12534977
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential contribution of reticulospinal cells to the control of locomotion induced by the mesencephalic locomotor region.
    Brocard F; Dubuc R
    J Neurophysiol; 2003 Sep; 90(3):1714-27. PubMed ID: 12736238
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Forebrain dopamine neurons project down to a brainstem region controlling locomotion.
    Ryczko D; Grätsch S; Auclair F; Dubé C; Bergeron S; Alpert MH; Cone JJ; Roitman MF; Alford S; Dubuc R
    Proc Natl Acad Sci U S A; 2013 Aug; 110(34):E3235-42. PubMed ID: 23918379
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Specific Population of Reticulospinal Neurons Controls the Termination of Locomotion.
    Juvin L; Grätsch S; Trillaud-Doppia E; Gariépy JF; Büschges A; Dubuc R
    Cell Rep; 2016 Jun; 15(11):2377-86. PubMed ID: 27264174
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The mesencephalic locomotor region sends a bilateral glutamatergic drive to hindbrain reticulospinal neurons in a tetrapod.
    Ryczko D; Auclair F; Cabelguen JM; Dubuc R
    J Comp Neurol; 2016 May; 524(7):1361-83. PubMed ID: 26470600
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A neuronal substrate for a state-dependent modulation of sensory inputs in the brainstem.
    Le Ray D; Juvin L; Boutin T; Auclair F; Dubuc R
    Eur J Neurosci; 2010 Jul; 32(1):53-9. PubMed ID: 20576031
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Brainstem neural mechanisms controlling locomotion with special reference to basal vertebrates.
    Lacroix-Ouellette P; Dubuc R
    Front Neural Circuits; 2023; 17():910207. PubMed ID: 37063386
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Descending GABAergic projections to the mesencephalic locomotor region in the lamprey Petromyzon marinus.
    Ménard A; Auclair F; Bourcier-Lucas C; Grillner S; Dubuc R
    J Comp Neurol; 2007 Mar; 501(2):260-73. PubMed ID: 17226790
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phasic modulation of transmission from vestibular inputs to reticulospinal neurons during fictive locomotion in lampreys.
    Bussières N; Dubuc R
    Brain Res; 1992 Jun; 582(1):147-53. PubMed ID: 1323371
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stimulation of the mesencephalic locomotor region elicits controlled swimming in semi-intact lampreys.
    Sirota MG; Di Prisco GV; Dubuc R
    Eur J Neurosci; 2000 Nov; 12(11):4081-92. PubMed ID: 11069605
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reversible cooling of the brainstem reveals areas required for mesencephalic locomotor region evoked treadmill locomotion.
    Shefchyk SJ; Jell RM; Jordan LM
    Exp Brain Res; 1984; 56(2):257-62. PubMed ID: 6479262
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential effects of the reticulospinal system on locomotion in lamprey.
    Wannier T; Deliagina TG; Orlovsky GN; Grillner S
    J Neurophysiol; 1998 Jul; 80(1):103-12. PubMed ID: 9658032
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulatory effect of substance P to the brain stem locomotor command in lampreys.
    Brocard F; Bardy C; Dubuc R
    J Neurophysiol; 2005 Apr; 93(4):2127-41. PubMed ID: 15548630
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of selective brainstem or spinal cord lesions on treadmill locomotion evoked by stimulation of the mesencephalic or pontomedullary locomotor regions.
    Noga BR; Kriellaars DJ; Jordan LM
    J Neurosci; 1991 Jun; 11(6):1691-700. PubMed ID: 2045881
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.