BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 30541923)

  • 1. Differential
    Adachi N; Hess DT; Kaku M; Ueda C; Numa C; Saito N
    J Biol Chem; 2019 Feb; 294(7):2569-2578. PubMed ID: 30541923
    [TBL] [Abstract][Full Text] [Related]  

  • 2. S-Palmitoylation of a Novel Site in the β2-Adrenergic Receptor Associated with a Novel Intracellular Itinerary.
    Adachi N; Hess DT; McLaughlin P; Stamler JS
    J Biol Chem; 2016 Sep; 291(38):20232-46. PubMed ID: 27481942
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential regulation of two palmitoylation sites in the cytoplasmic tail of the beta1-adrenergic receptor.
    Zuckerman DM; Hicks SW; Charron G; Hang HC; Machamer CE
    J Biol Chem; 2011 May; 286(21):19014-23. PubMed ID: 21464135
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Palmitoylation of the human prostacyclin receptor. Functional implications of palmitoylation and isoprenylation.
    Miggin SM; Lawler OA; Kinsella BT
    J Biol Chem; 2003 Feb; 278(9):6947-58. PubMed ID: 12488443
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of TRPP3 Channel Function by N-terminal Domain Palmitoylation and Phosphorylation.
    Zheng W; Yang J; Beauchamp E; Cai R; Hussein S; Hofmann L; Li Q; Flockerzi V; Berthiaume LG; Tang J; Chen XZ
    J Biol Chem; 2016 Dec; 291(49):25678-25691. PubMed ID: 27754867
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The essential role for aromatic cluster in the β3 adrenergic receptor.
    Cai HY; Xu ZJ; Tang J; Sun Y; Chen KX; Wang HY; Zhu WL
    Acta Pharmacol Sin; 2012 Aug; 33(8):1062-8. PubMed ID: 22728712
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An amphipathic α-helix directs palmitoylation of the large intracellular loop of the sodium/calcium exchanger.
    Plain F; Congreve SD; Yee RSZ; Kennedy J; Howie J; Kuo CW; Fraser NJ; Fuller W
    J Biol Chem; 2017 Jun; 292(25):10745-10752. PubMed ID: 28432123
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Amino-terminal cysteine residues differentially influence RGS4 protein plasma membrane targeting, intracellular trafficking, and function.
    Bastin G; Singh K; Dissanayake K; Mighiu AS; Nurmohamed A; Heximer SP
    J Biol Chem; 2012 Aug; 287(34):28966-74. PubMed ID: 22753418
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The palmitoylated cysteine of the cytoplasmic tail of alpha 2A-adrenergic receptors confers subtype-specific agonist-promoted downregulation.
    Eason MG; Jacinto MT; Theiss CT; Liggett SB
    Proc Natl Acad Sci U S A; 1994 Nov; 91(23):11178-82. PubMed ID: 7972030
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distinct palmitoylation events at the amino-terminal conserved cysteines of Env7 direct its stability, localization, and vacuolar fusion regulation in S. cerevisiae.
    Manandhar SP; Calle EN; Gharakhanian E
    J Biol Chem; 2014 Apr; 289(16):11431-11442. PubMed ID: 24610781
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cryo-EM structure of the β3-adrenergic receptor reveals the molecular basis of subtype selectivity.
    Nagiri C; Kobayashi K; Tomita A; Kato M; Kobayashi K; Yamashita K; Nishizawa T; Inoue A; Shihoya W; Nureki O
    Mol Cell; 2021 Aug; 81(15):3205-3215.e5. PubMed ID: 34314699
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The inhibitory effect of phospholemman on the sodium pump requires its palmitoylation.
    Tulloch LB; Howie J; Wypijewski KJ; Wilson CR; Bernard WG; Shattock MJ; Fuller W
    J Biol Chem; 2011 Oct; 286(41):36020-36031. PubMed ID: 21868384
    [TBL] [Abstract][Full Text] [Related]  

  • 13.
    Pan Y; Xiao Y; Pei Z; Cummins TR
    J Biol Chem; 2020 May; 295(18):6151-6164. PubMed ID: 32161114
    [No Abstract]   [Full Text] [Related]  

  • 14. Effects of palmitoylation of Cys(415) in helix 8 of the CB(1) cannabinoid receptor on membrane localization and signalling.
    Oddi S; Dainese E; Sandiford S; Fezza F; Lanuti M; Chiurchiù V; Totaro A; Catanzaro G; Barcaroli D; De Laurenzi V; Centonze D; Mukhopadhyay S; Selent J; Howlett AC; Maccarrone M
    Br J Pharmacol; 2012 Apr; 165(8):2635-51. PubMed ID: 21895628
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced cAMP response of naturally occurring mutant of human beta3-adrenergic receptor.
    Isogaya M; Nagao T; Kurose H
    Jpn J Pharmacol; 2002 Mar; 88(3):314-8. PubMed ID: 11949887
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CNS β
    Richard JE; López-Ferreras L; Chanclón B; Eerola K; Micallef P; Skibicka KP; Wernstedt Asterholm I
    Am J Physiol Endocrinol Metab; 2017 Sep; 313(3):E344-E358. PubMed ID: 28588096
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cardiac myocyte β3-adrenergic receptors prevent myocardial fibrosis by modulating oxidant stress-dependent paracrine signaling.
    Hermida N; Michel L; Esfahani H; Dubois-Deruy E; Hammond J; Bouzin C; Markl A; Colin H; Steenbergen AV; De Meester C; Beauloye C; Horman S; Yin X; Mayr M; Balligand JL
    Eur Heart J; 2018 Mar; 39(10):888-898. PubMed ID: 29106524
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dependence of β3-adrenergic signaling on the adipokine leptin in cardiac myocytes.
    Larson JE; Rainer PP; Watts VL; Yang R; Miller KL; Phan A; Barouch LA
    Int J Obes (Lond); 2012 Jun; 36(6):876-9. PubMed ID: 21772246
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In silico identification of a biarylamine acting as agonist at human β
    Soriano-Ursúa MA; Arias-Montaño JA; Ocampo-Néstor AL; Hernández-Martínez CF; Santillán-Torres I; Andrade-Jorge E; Valdez-Ortiz R; Fernández-Del Valle C; Trujillo-Ferrara JG
    Naunyn Schmiedebergs Arch Pharmacol; 2024 Apr; 397(4):2159-2170. PubMed ID: 37792048
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeting β3-Adrenergic Receptors in the Heart: Selective Agonism and β-Blockade.
    Cannavo A; Koch WJ
    J Cardiovasc Pharmacol; 2017 Feb; 69(2):71-78. PubMed ID: 28170359
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.