BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 30542292)

  • 1. Energy-Reduced Arrhythmia Termination Using Global Photostimulation in Optogenetic Murine Hearts.
    Quiñonez Uribe RA; Luther S; Diaz-Maue L; Richter C
    Front Physiol; 2018; 9():1651. PubMed ID: 30542292
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Patterned Illumination Techniques in Optogenetics: An Insight Into Decelerating Murine Hearts.
    Diaz-Maue L; Steinebach J; Richter C
    Front Physiol; 2021; 12():750535. PubMed ID: 35087413
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optogenetic Stimulation Using Anion Channelrhodopsin (GtACR1) Facilitates Termination of Reentrant Arrhythmias With Low Light Energy Requirements: A Computational Study.
    Ochs AR; Karathanos TV; Trayanova NA; Boyle PM
    Front Physiol; 2021; 12():718622. PubMed ID: 34526912
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Advanced Cardiac Rhythm Management by Applying Optogenetic Multi-Site Photostimulation in Murine Hearts.
    Diaz-Maue L; Steinebach J; Schwaerzle M; Luther S; Ruther P; Richter C
    J Vis Exp; 2021 Aug; (174):. PubMed ID: 34515679
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optogenetic termination of atrial fibrillation in mice.
    Bruegmann T; Beiert T; Vogt CC; Schrickel JW; Sasse P
    Cardiovasc Res; 2018 Apr; 114(5):713-723. PubMed ID: 29293898
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Opsin spectral sensitivity determines the effectiveness of optogenetic termination of ventricular fibrillation in the human heart: a simulation study.
    Karathanos TV; Bayer JD; Wang D; Boyle PM; Trayanova NA
    J Physiol; 2016 Dec; 594(23):6879-6891. PubMed ID: 26941055
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Termination of re-entrant atrial tachycardia via optogenetic stimulation with optimized spatial targeting: insights from computational models.
    Boyle PM; Murphy MJ; Karathanos TV; Zahid S; Blake RC; Trayanova NA
    J Physiol; 2018 Jan; 596(2):181-196. PubMed ID: 29193078
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Systemic gene transfer enables optogenetic pacing of mouse hearts.
    Vogt CC; Bruegmann T; Malan D; Ottersbach A; Roell W; Fleischmann BK; Sasse P
    Cardiovasc Res; 2015 May; 106(2):338-43. PubMed ID: 25587047
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optogenetic Termination of Cardiac Arrhythmia: Mechanistic Enlightenment and Therapeutic Application?
    Sasse P; Funken M; Beiert T; Bruegmann T
    Front Physiol; 2019; 10():675. PubMed ID: 31244670
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optogenetic termination of ventricular arrhythmias in the whole heart: towards biological cardiac rhythm management.
    Nyns ECA; Kip A; Bart CI; Plomp JJ; Zeppenfeld K; Schalij MJ; de Vries AAF; Pijnappels DA
    Eur Heart J; 2017 Jul; 38(27):2132-2136. PubMed ID: 28011703
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optogenetic termination of atrial tachyarrhythmias by brief pulsed light stimulation.
    Nakao M; Watanabe M; Miquerol L; Natsui H; Koizumi T; Kadosaka T; Koya T; Hagiwara H; Kamada R; Temma T; de Vries AAF; Anzai T
    J Mol Cell Cardiol; 2023 May; 178():9-21. PubMed ID: 36965700
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optogenetic manipulation of anatomical re-entry by light-guided generation of a reversible local conduction block.
    Watanabe M; Feola I; Majumder R; Jangsangthong W; Teplenin AS; Ypey DL; Schalij MJ; Zeppenfeld K; de Vries AA; Pijnappels DA
    Cardiovasc Res; 2017 Mar; 113(3):354-366. PubMed ID: 28395022
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultra-low power deep sustained optogenetic excitation of human ventricular cardiomyocytes with red-shifted opsins: a computational study.
    Pyari G; Bansal H; Roy S
    J Physiol; 2022 Nov; 600(21):4653-4676. PubMed ID: 36068951
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optogenetic Control of Human Induced Pluripotent Stem Cell-Derived Cardiac Tissue Models.
    Gruber A; Edri O; Glatstein S; Goldfracht I; Huber I; Arbel G; Gepstein A; Chorna S; Gepstein L
    J Am Heart Assoc; 2022 Feb; 11(4):e021615. PubMed ID: 35112880
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Follow the Light - From Low-Energy Defibrillation to Multi-Site Photostimulation.
    Diaz-Maue L; Schwaerzle M; Ruther P; Luther S; Richter C
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():4832-4835. PubMed ID: 30441427
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optogenetic defibrillation terminates ventricular arrhythmia in mouse hearts and human simulations.
    Bruegmann T; Boyle PM; Vogt CC; Karathanos TV; Arevalo HJ; Fleischmann BK; Trayanova NA; Sasse P
    J Clin Invest; 2016 Oct; 126(10):3894-3904. PubMed ID: 27617859
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Principles of Optogenetic Methods and Their Application to Cardiac Experimental Systems.
    Ferenczi EA; Tan X; Huang CL
    Front Physiol; 2019; 10():1096. PubMed ID: 31572204
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optogenetic Hyperpolarization of Cardiomyocytes Terminates Ventricular Arrhythmia.
    Funken M; Malan D; Sasse P; Bruegmann T
    Front Physiol; 2019; 10():498. PubMed ID: 31105593
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optogenetic Light Crafting Tools for the Control of Cardiac Arrhythmias.
    Richter C; Christoph J; Lehnart SE; Luther S
    Methods Mol Biol; 2016; 1408():293-302. PubMed ID: 26965131
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optical ventricular cardioversion by local optogenetic targeting and LED implantation in a cardiomyopathic rat model.
    Nyns ECA; Jin T; Fontes MS; van den Heuvel T; Portero V; Ramsey C; Bart CI; Zeppenfeld K; Schalij MJ; van Brakel TJ; Ramkisoensing AA; Zhang G; Poelma RH; Ördög B; de Vries AAF; Pijnappels DA
    Cardiovasc Res; 2022 Jul; 118(10):2293-2303. PubMed ID: 34528100
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.