These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
185 related articles for article (PubMed ID: 30542328)
1. Rare Earth Elements Alter Redox Balance in Akberdin IR; Collins DA; Hamilton R; Oshchepkov DY; Shukla AK; Nicora CD; Nakayasu ES; Adkins JN; Kalyuzhnaya MG Front Microbiol; 2018; 9():2735. PubMed ID: 30542328 [No Abstract] [Full Text] [Related]
2. XoxF Acts as the Predominant Methanol Dehydrogenase in the Type I Methanotroph Methylomicrobium buryatense. Chu F; Lidstrom ME J Bacteriol; 2016 Apr; 198(8):1317-25. PubMed ID: 26858104 [TBL] [Abstract][Full Text] [Related]
3. Lanthanide-Dependent Regulation of Methanol Oxidation Systems in Methylobacterium extorquens AM1 and Their Contribution to Methanol Growth. Vu HN; Subuyuj GA; Vijayakumar S; Good NM; Martinez-Gomez NC; Skovran E J Bacteriol; 2016 Apr; 198(8):1250-9. PubMed ID: 26833413 [TBL] [Abstract][Full Text] [Related]
4. PQQ-dependent methanol dehydrogenases: rare-earth elements make a difference. Keltjens JT; Pol A; Reimann J; Op den Camp HJ Appl Microbiol Biotechnol; 2014; 98(14):6163-83. PubMed ID: 24816778 [TBL] [Abstract][Full Text] [Related]
5. Use of rare-earth elements in the phyllosphere colonizer Methylobacterium extorquens PA1. Ochsner AM; Hemmerle L; Vonderach T; Nüssli R; Bortfeld-Miller M; Hattendorf B; Vorholt JA Mol Microbiol; 2019 May; 111(5):1152-1166. PubMed ID: 30653750 [TBL] [Abstract][Full Text] [Related]
6. Methane utilization in Methylomicrobium alcaliphilum 20Z Akberdin IR; Thompson M; Hamilton R; Desai N; Alexander D; Henard CA; Guarnieri MT; Kalyuzhnaya MG Sci Rep; 2018 Feb; 8(1):2512. PubMed ID: 29410419 [TBL] [Abstract][Full Text] [Related]
7. Stimulation of cell growth by addition of tungsten in batch culture of a methanotrophic bacterium, Methylomicrobium alcaliphilum 20Z on methane and methanol. Cho S; Ha S; Kim HS; Han JH; Kim H; Yeon YJ; Na JG; Lee J J Biotechnol; 2020 Feb; 309():81-84. PubMed ID: 31899249 [TBL] [Abstract][Full Text] [Related]
8. Biological conversion of methane to putrescine using genome-scale model-guided metabolic engineering of a methanotrophic bacterium Nguyen LT; Lee EY Biotechnol Biofuels; 2019; 12():147. PubMed ID: 31223337 [TBL] [Abstract][Full Text] [Related]
9. A comparative transcriptome analysis of the novel obligate methanotroph Methylomonas sp. DH-1 reveals key differences in transcriptional responses in C1 and secondary metabolite pathways during growth on methane and methanol. Nguyen AD; Kim D; Lee EY BMC Genomics; 2019 Feb; 20(1):130. PubMed ID: 30755173 [TBL] [Abstract][Full Text] [Related]
10. Contrasting in vitro and in vivo methanol oxidation activities of lanthanide-dependent alcohol dehydrogenases XoxF1 and ExaF from Methylobacterium extorquens AM1. Good NM; Moore RS; Suriano CJ; Martinez-Gomez NC Sci Rep; 2019 Mar; 9(1):4248. PubMed ID: 30862918 [TBL] [Abstract][Full Text] [Related]
11. Genome-scale evaluation of core one-carbon metabolism in gammaproteobacterial methanotrophs grown on methane and methanol. Nguyen AD; Park JY; Hwang IY; Hamilton R; Kalyuzhnaya MG; Kim D; Lee EY Metab Eng; 2020 Jan; 57():1-12. PubMed ID: 31626985 [TBL] [Abstract][Full Text] [Related]
12. Uptake and effect of rare earth elements on gene expression in Methylosinus trichosporium OB3b. Gu W; Farhan Ul Haque M; DiSpirito AA; Semrau JD FEMS Microbiol Lett; 2016 Jul; 363(13):. PubMed ID: 27190151 [TBL] [Abstract][Full Text] [Related]
13. Transcriptomic and Metabolomic Responses to Carbon and Nitrogen Sources in Methylomicrobium album BG8. Sugden S; Lazic M; Sauvageau D; Stein LY Appl Environ Microbiol; 2021 Jun; 87(13):e0038521. PubMed ID: 33893121 [TBL] [Abstract][Full Text] [Related]
14. Physiological Effect of XoxG(4) on Lanthanide-Dependent Methanotrophy. Zheng Y; Huang J; Zhao F; Chistoserdova L mBio; 2018 Mar; 9(2):. PubMed ID: 29588409 [TBL] [Abstract][Full Text] [Related]
15. Pyrroloquinoline Quinone Ethanol Dehydrogenase in Methylobacterium extorquens AM1 Extends Lanthanide-Dependent Metabolism to Multicarbon Substrates. Good NM; Vu HN; Suriano CJ; Subuyuj GA; Skovran E; Martinez-Gomez NC J Bacteriol; 2016 Nov; 198(22):3109-3118. PubMed ID: 27573017 [TBL] [Abstract][Full Text] [Related]
16. Lanthanide-Dependent Regulation of Methylotrophy in Masuda S; Suzuki Y; Fujitani Y; Mitsui R; Nakagawa T; Shintani M; Tani A mSphere; 2018; 3(1):. PubMed ID: 29404411 [No Abstract] [Full Text] [Related]
17. MxaY regulates the lanthanide-mediated methanol dehydrogenase switch in Methylomicrobium buryatense. Chu F; Beck DA; Lidstrom ME PeerJ; 2016; 4():e2435. PubMed ID: 27651996 [TBL] [Abstract][Full Text] [Related]
18. New pieces to the lanthanide puzzle. Chistoserdova L Mol Microbiol; 2019 May; 111(5):1127-1131. PubMed ID: 30673122 [TBL] [Abstract][Full Text] [Related]
19. Role of NAD⁺-Dependent Malate Dehydrogenase in the Metabolism of Methylomicrobium alcaliphilum 20Z and Methylosinus trichosporium OB3b. Rozova ON; Khmelenina VN; Bocharova KA; Mustakhimov II; Trotsenko YA Microorganisms; 2015 Feb; 3(1):47-59. PubMed ID: 27682078 [TBL] [Abstract][Full Text] [Related]
20. A Mutagenic Screen Identifies a TonB-Dependent Receptor Required for the Lanthanide Metal Switch in the Type I Methanotroph "Methylotuvimicrobium buryatense" 5GB1C. Groom JD; Ford SM; Pesesky MW; Lidstrom ME J Bacteriol; 2019 Aug; 201(15):. PubMed ID: 31085692 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]