BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 30543022)

  • 1. Applying Machine Learning Algorithms to Segment High-Cost Patient Populations.
    Yan J; Linn KA; Powers BW; Zhu J; Jain SH; Kowalski JL; Navathe AS
    J Gen Intern Med; 2019 Feb; 34(2):211-217. PubMed ID: 30543022
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Subgroups of High-Cost Medicare Advantage Patients: an Observational Study.
    Powers BW; Yan J; Zhu J; Linn KA; Jain SH; Kowalski JL; Navathe AS
    J Gen Intern Med; 2019 Feb; 34(2):218-225. PubMed ID: 30511290
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temporal Patterns of High-Spend Subgroups Can Inform Service Strategy for Medicare Advantage Enrollees.
    Amodeo SJ; Kowalkowski HF; Brantley HL; Jones NW; Bangerter LR; Cook DJ
    J Gen Intern Med; 2022 Jun; 37(8):1853-1861. PubMed ID: 34100239
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Clinical fracture risk evaluated by hierarchical agglomerative clustering.
    Kruse C; Eiken P; Vestergaard P
    Osteoporos Int; 2017 Mar; 28(3):819-832. PubMed ID: 27848006
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of Machine-Learning Algorithms for Predicting Opioid Overdose Risk Among Medicare Beneficiaries With Opioid Prescriptions.
    Lo-Ciganic WH; Huang JL; Zhang HH; Weiss JC; Wu Y; Kwoh CK; Donohue JM; Cochran G; Gordon AJ; Malone DC; Kuza CC; Gellad WF
    JAMA Netw Open; 2019 Mar; 2(3):e190968. PubMed ID: 30901048
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detecting Clinically Meaningful Shape Clusters in Medical Image Data: Metrics Analysis for Hierarchical Clustering Applied to Healthy and Pathological Aortic Arches.
    Bruse JL; Zuluaga MA; Khushnood A; McLeod K; Ntsinjana HN; Hsia TY; Sermesant M; Pennec X; Taylor AM; Schievano S
    IEEE Trans Biomed Eng; 2017 Oct; 64(10):2373-2383. PubMed ID: 28221991
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of Machine Learning to Identify Clustering of Cardiometabolic Risk Factors in U.S. Adults.
    Liao X; Kerr D; Morales J; Duncan I
    Diabetes Technol Ther; 2019 May; 21(5):245-253. PubMed ID: 30969131
    [No Abstract]   [Full Text] [Related]  

  • 8. Patient-Level Prediction of Cardio-Cerebrovascular Events in Hypertension Using Nationwide Claims Data.
    Park J; Kim JW; Ryu B; Heo E; Jung SY; Yoo S
    J Med Internet Res; 2019 Feb; 21(2):e11757. PubMed ID: 30767907
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On how to not misuse hierarchical clustering on principal components to define clinically meaningful patient subgroups. Response to: 'On using machine learning algorithms to define clinical meaningful patient subgroups' by Pinal-Fernandez and Mammen.
    Meyer A; Spielmann L; Séverac F
    Ann Rheum Dis; 2020 Oct; 79(10):e129. PubMed ID: 31340924
    [No Abstract]   [Full Text] [Related]  

  • 10. Contribution of preventable acute care spending to total spending for high-cost Medicare patients.
    Joynt KE; Gawande AA; Orav EJ; Jha AK
    JAMA; 2013 Jun; 309(24):2572-8. PubMed ID: 23797716
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A machine learning approach to identify distinct subgroups of veterans at risk for hospitalization or death using administrative and electronic health record data.
    Parikh RB; Linn KA; Yan J; Maciejewski ML; Rosland AM; Volpp KG; Groeneveld PW; Navathe AS
    PLoS One; 2021; 16(2):e0247203. PubMed ID: 33606819
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identifying Distinct Subgroups of ICU Patients: A Machine Learning Approach.
    Vranas KC; Jopling JK; Sweeney TE; Ramsey MC; Milstein AS; Slatore CG; Escobar GJ; Liu VX
    Crit Care Med; 2017 Oct; 45(10):1607-1615. PubMed ID: 28640021
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Machine-learned cluster identification in high-dimensional data.
    Ultsch A; Lötsch J
    J Biomed Inform; 2017 Feb; 66():95-104. PubMed ID: 28040499
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identifying subgroups of complex patients with cluster analysis.
    Newcomer SR; Steiner JF; Bayliss EA
    Am J Manag Care; 2011 Aug; 17(8):e324-32. PubMed ID: 21851140
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sheep's coping style can be identified by unsupervised machine learning from unlabeled data.
    Çakmakçı C
    Behav Processes; 2022 Jan; 194():104559. PubMed ID: 34838901
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of machine learning clustering algorithms for detecting heterogeneity of treatment effect in acute respiratory distress syndrome: A secondary analysis of three randomised controlled trials.
    Sinha P; Spicer A; Delucchi KL; McAuley DF; Calfee CS; Churpek MM
    EBioMedicine; 2021 Dec; 74():103697. PubMed ID: 34861492
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Machine learning ensemble models predict total charges and drivers of cost for transsphenoidal surgery for pituitary tumor.
    Muhlestein WE; Akagi DS; McManus AR; Chambless LB
    J Neurosurg; 2018 Sep; 131(2):507-516. PubMed ID: 30239321
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Discriminative clustering via extreme learning machine.
    Huang G; Liu T; Yang Y; Lin Z; Song S; Wu C
    Neural Netw; 2015 Oct; 70():1-8. PubMed ID: 26143036
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Segmentation of lung parenchyma in CT images using CNN trained with the clustering algorithm generated dataset.
    Xu M; Qi S; Yue Y; Teng Y; Xu L; Yao Y; Qian W
    Biomed Eng Online; 2019 Jan; 18(1):2. PubMed ID: 30602393
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of Unsupervised Machine Learning Approaches for Cluster Analysis to Define Subgroups of Heart Failure with Preserved Ejection Fraction with Different Outcomes.
    Nouraei H; Nouraei H; Rabkin SW
    Bioengineering (Basel); 2022 Apr; 9(4):. PubMed ID: 35447735
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.