These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 30543094)

  • 1. Printing Birefringent Figures by Surface Tension-Directed Self-Assembly of a Cellulose Nanocrystal/Polymer Ink Components.
    Mashkour M; Kimura T; Mashkour M; Kimura F; Tajvidi M
    ACS Appl Mater Interfaces; 2019 Jan; 11(1):1538-1545. PubMed ID: 30543094
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct-write fabrication of colloidal photonic crystal microarrays by ink-jet printing.
    Park J; Moon J; Shin H; Wang D; Park M
    J Colloid Interface Sci; 2006 Jun; 298(2):713-9. PubMed ID: 16458916
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inkjet Printed Photonic Cellulose Nanocrystal Patterns.
    Williams CA; Parker RM; Kyriacou A; Murace M; Vignolini S
    Adv Mater; 2024 Jan; 36(1):e2307563. PubMed ID: 37965844
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Luminescent nanohybrid of ZnO quantum dot and cellulose nanocrystal as anti-counterfeiting ink.
    Ngoensawat U; Parnsubsakul A; Kaitphaiboonwet S; Wutikhun T; Sapcharoenkun C; Pienpinijtham P; Ekgasit S
    Carbohydr Polym; 2021 Jun; 262():117864. PubMed ID: 33838790
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural Color Patterns by Electrohydrodynamic Jet Printed Photonic Crystals.
    Ding H; Zhu C; Tian L; Liu C; Fu G; Shang L; Gu Z
    ACS Appl Mater Interfaces; 2017 Apr; 9(13):11933-11941. PubMed ID: 28120613
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct printing of nanostructures by electrostatic autofocussing of ink nanodroplets.
    Galliker P; Schneider J; Eghlidi H; Kress S; Sandoghdar V; Poulikakos D
    Nat Commun; 2012 Jun; 3():890. PubMed ID: 22692533
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pharmaceutical-grade oral films as substrates for printed medicine.
    Wimmer-Teubenbacher M; Planchette C; Pichler H; Markl D; Hsiao WK; Paudel A; Stegemann S
    Int J Pharm; 2018 Aug; 547(1-2):169-180. PubMed ID: 29782971
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomimetic Inks Based on Cellulose Nanofibrils and Cross-Linkable Xylans for 3D Printing.
    Markstedt K; Escalante A; Toriz G; Gatenholm P
    ACS Appl Mater Interfaces; 2017 Nov; 9(46):40878-40886. PubMed ID: 29068193
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molding Inkjetted Silver on Nanostructured Surfaces for High-Throughput Structural Color Printing.
    Jiang H; Alan S; Shahbazbegian H; Patel JN; Kaminska B
    ACS Nano; 2016 Nov; 10(11):10544-10554. PubMed ID: 27934077
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 4D Printing of Complex Structures with a Fast Response Time to Magnetic Stimulus.
    Zhu P; Yang W; Wang R; Gao S; Li B; Li Q
    ACS Appl Mater Interfaces; 2018 Oct; 10(42):36435-36442. PubMed ID: 30270611
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simultaneous Printing of Two Inks by Contact Lithography.
    Moore D; Saraf RF
    ACS Appl Mater Interfaces; 2018 Apr; 10(16):14193-14199. PubMed ID: 29617566
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ink-Jet Printing of High-Molecular-Weight Polymers in Oil-in-Water Emulsions.
    Johns AS; Bain CD
    ACS Appl Mater Interfaces; 2017 Jul; 9(27):22918-22926. PubMed ID: 28654235
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inkjet Printing of Patterned, Multispectral, and Biocompatible Photonic Crystals.
    Li W; Wang Y; Li M; Garbarini LP; Omenetto FG
    Adv Mater; 2019 Sep; 31(36):e1901036. PubMed ID: 31309624
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering chemically exfoliated dispersions of two-dimensional graphite and molybdenum disulphide for ink-jet printing.
    Michel M; Desai JA; Biswas C; Kaul AB
    Nanotechnology; 2016 Dec; 27(48):485602. PubMed ID: 27805909
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamics of Cellulose Nanocrystal Alignment during 3D Printing.
    Hausmann MK; Rühs PA; Siqueira G; Läuger J; Libanori R; Zimmermann T; Studart AR
    ACS Nano; 2018 Jul; 12(7):6926-6937. PubMed ID: 29975510
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D printed scaffolds with gradient porosity based on a cellulose nanocrystal hydrogel.
    Sultan S; Mathew AP
    Nanoscale; 2018 Mar; 10(9):4421-4431. PubMed ID: 29451572
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Printing Three-Dimensional Heterogeneities in the Elastic Modulus of an Elastomeric Matrix.
    Abdel Fattah AR; Ghosh S; Puri IK
    ACS Appl Mater Interfaces; 2016 May; 8(17):11018-23. PubMed ID: 27088326
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A recombinant triblock protein polymer with dispersant and binding properties for digital printing.
    Qi M; O'Brien JP; Yang J
    Biopolymers; 2008; 90(1):28-36. PubMed ID: 17972282
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Simple Route of Printing Explosive Crystalized Micro-Patterns by Using Direct Ink Writing.
    Brilian AI; Soum V; Park S; Lee S; Kim J; Kwon K; Kwon OS; Shin K
    Micromachines (Basel); 2021 Jan; 12(2):. PubMed ID: 33494418
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of different substrates for inkjet printing of rasagiline mesylate.
    Genina N; Janßen EM; Breitenbach A; Breitkreutz J; Sandler N
    Eur J Pharm Biopharm; 2013 Nov; 85(3 Pt B):1075-83. PubMed ID: 23563101
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.