These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 30543217)
1. Host-guest energetic materials constructed by incorporating oxidizing gas molecules into an organic lattice cavity toward achieving highly-energetic and low-sensitivity performance. Xu J; Zheng S; Huang S; Tian Y; Liu Y; Zhang H; Sun J Chem Commun (Camb); 2019 Jan; 55(7):909-912. PubMed ID: 30543217 [TBL] [Abstract][Full Text] [Related]
2. Smart Host-Guest Energetic Material Constructed by Stabilizing Energetic Fuel Hydroxylamine in Lattice Cavity of 2,4,6,8,10,12-Hexanitrohexaazaisowurtzitane Significantly Enhanced the Detonation, Safety, Propulsion, and Combustion Performances. Sun S; Zhang H; Wang Z; Xu J; Huang S; Tian Y; Sun J ACS Appl Mater Interfaces; 2021 Dec; 13(51):61324-61333. PubMed ID: 34910453 [TBL] [Abstract][Full Text] [Related]
3. Solvent Vapor/Gas-Induced Guest Transport and Exchange of a Nonporous Organic Crystal to Construct Smart Host-Guest Energetic Materials. Song X; Zhang H; Jin D; Huang S; Sun J; Xu J ACS Appl Mater Interfaces; 2024 Oct; 16(39):52264-52276. PubMed ID: 39358898 [TBL] [Abstract][Full Text] [Related]
4. Experimental and Theoretical Study on the Stability of CL-20-Based Host-Guest Energetic Materials. Ding R; Xu J; Tao Y; Sun J; Lei M J Phys Chem A; 2020 Aug; 124(31):6389-6398. PubMed ID: 32654485 [TBL] [Abstract][Full Text] [Related]
5. Roles of Small Molecules in the Stability and Sensitivity of CL-20-Based Host-Guest Explosives under Electric Fields: A Reactive Molecular Dynamics Study. Zhang J; Guo W J Phys Chem A; 2022 Jan; 126(2):286-295. PubMed ID: 34985266 [TBL] [Abstract][Full Text] [Related]
6. Host-guest energetic nanocomposites based on self-assembly of multi-nitro organic molecules in nanochannels of mesoporous materials. Cai H; Yang R; Yang G; Huang H; Nie F Nanotechnology; 2011 Jul; 22(30):305602. PubMed ID: 21697583 [TBL] [Abstract][Full Text] [Related]
7. Pressure-Induced In Situ Construction of P-CO/HNIW Explosive Composites with Excellent Laser Initiation and Detonation Performance. Sun S; Xu J; Gou H; Zhang Z; Zhang H; Tan Y; Sun J ACS Appl Mater Interfaces; 2021 May; 13(17):20718-20727. PubMed ID: 33891820 [TBL] [Abstract][Full Text] [Related]
8. High-density HNIW/TNT cocrystal synthesized using a green chemical method. Liu Y; An C; Luo J; Wang J Acta Crystallogr B Struct Sci Cryst Eng Mater; 2018 Aug; 74(Pt 4):385-393. PubMed ID: 30141424 [TBL] [Abstract][Full Text] [Related]
9. A promising high-energy-density material. Zhang W; Zhang J; Deng M; Qi X; Nie F; Zhang Q Nat Commun; 2017 Aug; 8(1):181. PubMed ID: 28769119 [TBL] [Abstract][Full Text] [Related]
10. 3,3'-Dinitroamino-4,4'-azoxyfurazan and its derivatives: an assembly of diverse N-O building blocks for high-performance energetic materials. Zhang J; Shreeve JM J Am Chem Soc; 2014 Mar; 136(11):4437-45. PubMed ID: 24571188 [TBL] [Abstract][Full Text] [Related]
11. A Heat-Resistant and Energetic Metal-Organic Framework Assembled by Chelating Ligand. Wang Q; Wang S; Feng X; Wu L; Zhang G; Zhou M; Wang B; Yang L ACS Appl Mater Interfaces; 2017 Nov; 9(43):37542-37547. PubMed ID: 29045122 [TBL] [Abstract][Full Text] [Related]
12. Energetic salts with π-stacking and hydrogen-bonding interactions lead the way to future energetic materials. Zhang J; Zhang Q; Vo TT; Parrish DA; Shreeve JM J Am Chem Soc; 2015 Feb; 137(4):1697-704. PubMed ID: 25565429 [TBL] [Abstract][Full Text] [Related]
13. An Ag(I) energetic metal-organic framework assembled with the energetic combination of furazan and tetrazole: synthesis, structure and energetic performance. Qu XN; Zhang S; Wang BZ; Yang Q; Han J; Wei Q; Xie G; Chen SP Dalton Trans; 2016 Apr; 45(16):6968-73. PubMed ID: 26987079 [TBL] [Abstract][Full Text] [Related]
15. Molecular dynamics of host-guest complexes of small gas molecules with calix[4]arenes. Adams JE; Cox JR; Christiano AJ; Deakyne CA J Phys Chem A; 2008 Jul; 112(30):6829-39. PubMed ID: 18593133 [TBL] [Abstract][Full Text] [Related]
16. Axial substitution of a precursor resulted in two high-energy copper(ii) complexes with superior detonation performances. Li X; Yang Q; Wei Q; Xie G; Chen S; Gao S Dalton Trans; 2017 Oct; 46(38):12893-12900. PubMed ID: 28920977 [TBL] [Abstract][Full Text] [Related]
17. Energetic multifunctionalized nitraminopyrazoles and their ionic derivatives: ternary hydrogen-bond induced high energy density materials. Yin P; Parrish DA; Shreeve JM J Am Chem Soc; 2015 Apr; 137(14):4778-86. PubMed ID: 25807076 [TBL] [Abstract][Full Text] [Related]
18. Organic intercalation material: reversible change in interlayer distances by guest release and insertion in sandwich-type inclusion crystals of cholic acid. Nakano K; Sada K; Nakagawa K; Aburaya K; Yoswathananont N; Tohnai N; Miyata M Chemistry; 2005 Mar; 11(6):1725-33. PubMed ID: 15651017 [TBL] [Abstract][Full Text] [Related]
19. Size-matched hydrogen bonded hydroxylammonium frameworks for regulation of energetic materials. Lai Q; Pei L; Fei T; Yin P; Pang S; Shreeve JM Nat Commun; 2022 Nov; 13(1):6937. PubMed ID: 36376317 [TBL] [Abstract][Full Text] [Related]
20. 1-(3,5-Dinitro-1H-pyrazol-4-yl)-3-nitro-1H-1,2,4-triazol-5-amine (HCPT) and its energetic salts: highly thermally stable energetic materials with high-performance. Li C; Zhang M; Chen Q; Li Y; Gao H; Fu W; Zhou Z Dalton Trans; 2016 Nov; 45(44):17956-17965. PubMed ID: 27781234 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]