These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 30543229)

  • 1. Strain in a single wrinkle on an MoS
    Deng S; Che S; Debbarma R; Berry V
    Nanoscale; 2019 Jan; 11(2):504-511. PubMed ID: 30543229
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabry-Perot Cavity-Enhanced Optical Absorption in Ultrasensitive Tunable Photodiodes Based on Hybrid 2D Materials.
    Wang Q; Guo J; Ding Z; Qi D; Jiang J; Wang Z; Chen W; Xiang Y; Zhang W; Wee ATS
    Nano Lett; 2017 Dec; 17(12):7593-7598. PubMed ID: 29115838
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adhesion Energy of MoS
    Deng S; Gao E; Xu Z; Berry V
    ACS Appl Mater Interfaces; 2017 Mar; 9(8):7812-7818. PubMed ID: 28124892
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MoS2/MX2 heterobilayers: bandgap engineering via tensile strain or external electrical field.
    Lu N; Guo H; Li L; Dai J; Wang L; Mei WN; Wu X; Zeng XC
    Nanoscale; 2014 Mar; 6(5):2879-86. PubMed ID: 24473269
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photo-Induced Bandgap Renormalization Governs the Ultrafast Response of Single-Layer MoS2.
    Pogna EA; Marsili M; De Fazio D; Dal Conte S; Manzoni C; Sangalli D; Yoon D; Lombardo A; Ferrari AC; Marini A; Cerullo G; Prezzi D
    ACS Nano; 2016 Jan; 10(1):1182-8. PubMed ID: 26691058
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of the Substrate on the Optical and Photo-electrochemical Properties of Monolayer MoS
    Wang L; Nilsson ZN; Tahir M; Chen H; Sambur JB
    ACS Appl Mater Interfaces; 2020 Apr; 12(13):15034-15042. PubMed ID: 32141285
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tip-Induced Nano-Engineering of Strain, Bandgap, and Exciton Funneling in 2D Semiconductors.
    Koo Y; Kim Y; Choi SH; Lee H; Choi J; Lee DY; Kang M; Lee HS; Kim KK; Lee G; Park KD
    Adv Mater; 2021 Apr; 33(17):e2008234. PubMed ID: 33709476
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optical Gain in MoS2 via Coupling with Nanostructured Substrate: Fabry-Perot Interference and Plasmonic Excitation.
    Jeong HY; Kim UJ; Kim H; Han GH; Lee H; Kim MS; Jin Y; Ly TH; Lee SY; Roh YG; Joo WJ; Hwang SW; Park Y; Lee YH
    ACS Nano; 2016 Sep; 10(9):8192-8. PubMed ID: 27556640
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intrinsic Properties of Suspended MoS
    Chaste J; Missaoui A; Huang S; Henck H; Ben Aziza Z; Ferlazzo L; Naylor C; Balan A; Johnson ATC; Braive R; Ouerghi A
    ACS Nano; 2018 Apr; 12(4):3235-3242. PubMed ID: 29553713
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probing Nanoscale Exciton Funneling at Wrinkles of Twisted Bilayer MoS
    Shao J; Chen F; Su W; Kumar N; Zeng Y; Wu L; Lu HW
    J Phys Chem Lett; 2022 Apr; 13(14):3304-3309. PubMed ID: 35389654
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strain-induced indirect to direct bandgap transition in multilayer WSe2.
    Desai SB; Seol G; Kang JS; Fang H; Battaglia C; Kapadia R; Ager JW; Guo J; Javey A
    Nano Lett; 2014 Aug; 14(8):4592-7. PubMed ID: 24988370
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strained Epitaxy of Monolayer Transition Metal Dichalcogenides for Wrinkle Arrays.
    Wang J; Han M; Wang Q; Ji Y; Zhang X; Shi R; Wu Z; Zhang L; Amini A; Guo L; Wang N; Lin J; Cheng C
    ACS Nano; 2021 Apr; 15(4):6633-6644. PubMed ID: 33819027
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Switchable, Tunable, and Directable Exciton Funneling in Periodically Wrinkled WS
    Lee J; Yun SJ; Seo C; Cho K; Kim TS; An GH; Kang K; Lee HS; Kim J
    Nano Lett; 2021 Jan; 21(1):43-50. PubMed ID: 33052049
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transition metal chalcogenides: ultrathin inorganic materials with tunable electronic properties.
    Heine T
    Acc Chem Res; 2015 Jan; 48(1):65-72. PubMed ID: 25489917
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct Bandgap-like Strong Photoluminescence from Twisted Multilayer MoS
    Sarkar S; Mathew S; Chintalapati S; Rath A; Panahandeh-Fard M; Saha S; Goswami S; Tan SJR; Loh KP; Scott M; Venkatesan T
    ACS Nano; 2020 Dec; 14(12):16761-16769. PubMed ID: 33284605
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photophysics and Electronic Structure of Lateral Graphene/MoS
    Subramanian S; Campbell QT; Moser SK; Kiemle J; Zimmermann P; Seifert P; Sigger F; Sharma D; Al-Sadeg H; Labella M; Waters D; Feenstra RM; Koch RJ; Jozwiak C; Bostwick A; Rotenberg E; Dabo I; Holleitner AW; Beechem TE; Wurstbauer U; Robinson JA
    ACS Nano; 2020 Dec; 14(12):16663-16671. PubMed ID: 33196167
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Continuously tunable electronic structure of transition metal dichalcogenides superlattices.
    Zhao YH; Yang F; Wang J; Guo H; Ji W
    Sci Rep; 2015 Feb; 5():8356. PubMed ID: 25677917
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electronic Properties of MoS2-WS2 Heterostructures Synthesized with Two-Step Lateral Epitaxial Strategy.
    Chen K; Wan X; Wen J; Xie W; Kang Z; Zeng X; Chen H; Xu JB
    ACS Nano; 2015 Oct; 9(10):9868-76. PubMed ID: 26373884
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatially resolved photoexcited charge-carrier dynamics in phase-engineered monolayer MoS2.
    Yamaguchi H; Blancon JC; Kappera R; Lei S; Najmaei S; Mangum BD; Gupta G; Ajayan PM; Lou J; Chhowalla M; Crochet JJ; Mohite AD
    ACS Nano; 2015 Jan; 9(1):840-9. PubMed ID: 25521210
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Straintronics in two-dimensional in-plane heterostructures of transition-metal dichalcogenides.
    Wei W; Dai Y; Huang B
    Phys Chem Chem Phys; 2016 Dec; 19(1):663-672. PubMed ID: 27918042
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.