These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 30543237)

  • 1. Surface versus solution chemistry: manipulating nanoparticle shape and composition through metal-thiolate interactions.
    Smith JD; Bunch CM; Li Y; Koczkur KM; Skrabalak SE
    Nanoscale; 2019 Jan; 11(2):512-519. PubMed ID: 30543237
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Seeding a New Kind of Garden: Synthesis of Architecturally Defined Multimetallic Nanostructures by Seed-Mediated Co-Reduction.
    Weiner RG; Kunz MR; Skrabalak SE
    Acc Chem Res; 2015 Oct; 48(10):2688-95. PubMed ID: 26339803
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Seed-mediated co-reduction in a large lattice mismatch system: synthesis of Pd-Cu nanostructures.
    Kunz MR; McClain SM; Chen DP; Koczkur KM; Weiner RG; Skrabalak SE
    Nanoscale; 2017 Jun; 9(22):7570-7576. PubMed ID: 28534897
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diffusion and seed shape: intertwined parameters in the synthesis of branched metal nanostructures.
    Weiner RG; DeSantis CJ; Cardoso MB; Skrabalak SE
    ACS Nano; 2014 Aug; 8(8):8625-35. PubMed ID: 25133784
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ligand-controlled Co-reduction versus electroless Co-deposition: synthesis of nanodendrites with spatially defined bimetallic distributions.
    Ortiz N; Weiner RG; Skrabalak SE
    ACS Nano; 2014 Dec; 8(12):12461-7. PubMed ID: 25490676
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Seed-mediated co-reduction: a versatile route to architecturally controlled bimetallic nanostructures.
    DeSantis CJ; Sue AC; Bower MM; Skrabalak SE
    ACS Nano; 2012 Mar; 6(3):2617-28. PubMed ID: 22369230
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modern Chemical Routes for the Controlled Synthesis of Anisotropic Bimetallic Nanostructures and Their Application in Catalysis.
    Bhol P; Bhavya MB; Swain S; Saxena M; Samal AK
    Front Chem; 2020; 8():357. PubMed ID: 32528924
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Symmetry-Breaking Synthesis of Multicomponent Nanoparticles.
    Huang Z; Gong J; Nie Z
    Acc Chem Res; 2019 Apr; 52(4):1125-1133. PubMed ID: 30943008
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multifaceted Gold-Palladium Bimetallic Nanorods and Their Geometric, Compositional, and Catalytic Tunabilities.
    Sun L; Zhang Q; Li GG; Villarreal E; Fu X; Wang H
    ACS Nano; 2017 Mar; 11(3):3213-3228. PubMed ID: 28230971
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An inorganic capping strategy for the seeded growth of versatile bimetallic nanostructures.
    Pei Y; Maligal-Ganesh RV; Xiao C; Goh TW; Brashler K; Gustafson JA; Huang W
    Nanoscale; 2015 Oct; 7(40):16721-8. PubMed ID: 26399612
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Noble Metal Nanostructure Synthesis at the Liquid-Substrate Interface: New Structures, New Insights, and New Possibilities.
    Neretina S; Hughes RA; Gilroy KD; Hajfathalian M
    Acc Chem Res; 2016 Oct; 49(10):2243-2250. PubMed ID: 27622782
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface Functionalization of Metal Nanoparticles by Conjugated Metal-Ligand Interfacial Bonds: Impacts on Intraparticle Charge Transfer.
    Hu P; Chen L; Kang X; Chen S
    Acc Chem Res; 2016; 49(10):2251-2260. PubMed ID: 27690382
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Manipulating the architecture of Pd@Pt nanostructures through metal-selective capping agent interactions.
    Ataee-Esfahani H; Skrabalak SE
    Chem Commun (Camb); 2016 Sep; 52(71):10783-6. PubMed ID: 27517099
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Shape-control and electrocatalytic activity-enhancement of Pt-based bimetallic nanocrystals.
    Porter NS; Wu H; Quan Z; Fang J
    Acc Chem Res; 2013 Aug; 46(8):1867-77. PubMed ID: 23461578
    [TBL] [Abstract][Full Text] [Related]  

  • 15. One-pot synthesis of trimetallic Au@PdPt core-shell nanoparticles with high catalytic performance.
    Kang SW; Lee YW; Park Y; Choi BS; Hong JW; Park KH; Han SW
    ACS Nano; 2013 Sep; 7(9):7945-55. PubMed ID: 23915173
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controlling the Morphology of Au-Pd Heterodimer Nanoparticles by Surface Ligands.
    Kluenker M; Connolly BM; Marolf DM; Nawaz Tahir M; Korschelt K; Simon P; Köhler U; Plana-Ruiz S; Barton B; Panthöfer M; Kolb U; Tremel W
    Inorg Chem; 2018 Nov; 57(21):13640-13652. PubMed ID: 30289701
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gold nanoparticles: past, present, and future.
    Sardar R; Funston AM; Mulvaney P; Murray RW
    Langmuir; 2009 Dec; 25(24):13840-51. PubMed ID: 19572538
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Composition-controlled synthesis of bimetallic gold-silver nanoparticles.
    Kariuki NN; Luo J; Maye MM; Hassan SA; Menard T; Naslund HR; Lin Y; Wang C; Engelhard MH; Zhong CJ
    Langmuir; 2004 Dec; 20(25):11240-6. PubMed ID: 15568881
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetically controlled overgrowth of Ag or Au on Pd nanocrystal seeds: from hybrid dimers to nonconcentric and concentric bimetallic nanocrystals.
    Zhu C; Zeng J; Tao J; Johnson MC; Schmidt-Krey I; Blubaugh L; Zhu Y; Gu Z; Xia Y
    J Am Chem Soc; 2012 Sep; 134(38):15822-31. PubMed ID: 22947077
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Size and composition control of Pt-In nanoparticles prepared by seed-mediated growth using bimetallic seeds.
    Somodi F; Werner S; Peng Z; Getsoian AB; Mlinar AN; Yeo BS; Bell AT
    Langmuir; 2012 Feb; 28(7):3345-9. PubMed ID: 22300428
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.