These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 30543252)

  • 1. A liquid metal-based self-adaptive sulfur-gallium composite for long-cycling lithium-sulfur batteries.
    Zhu M; Li S; Li B; Yang S
    Nanoscale; 2019 Jan; 11(2):412-417. PubMed ID: 30543252
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In Situ Generated Li
    Yan H; Wang H; Wang D; Li X; Gong Z; Yang Y
    Nano Lett; 2019 May; 19(5):3280-3287. PubMed ID: 31009570
    [TBL] [Abstract][Full Text] [Related]  

  • 3. From Metal-Organic Framework to Li
    He J; Chen Y; Lv W; Wen K; Xu C; Zhang W; Li Y; Qin W; He W
    ACS Nano; 2016 Dec; 10(12):10981-10987. PubMed ID: 28024364
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dual Core-Shell-Structured S@C@MnO
    Ni L; Zhao G; Yang G; Niu G; Chen M; Diao G
    ACS Appl Mater Interfaces; 2017 Oct; 9(40):34793-34803. PubMed ID: 28817251
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PVP-Assisted Synthesis of Uniform Carbon Coated Li2S/CB for High-Performance Lithium-Sulfur Batteries.
    Chen L; Liu Y; Zhang F; Liu C; Shaw LL
    ACS Appl Mater Interfaces; 2015 Nov; 7(46):25748-56. PubMed ID: 26529481
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient Encapsulation of Small S
    Hong XJ; Tang XY; Wei Q; Song CL; Wang SY; Dong RF; Cai YP; Si LP
    ACS Appl Mater Interfaces; 2018 Mar; 10(11):9435-9443. PubMed ID: 29528216
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Core-Shell-Structured Sulfur Cathode: Ultrathin δ-MnO
    Li Q; Ma Z; Li J; Liu Z; Fan L; Qin X; Shao G
    ACS Appl Mater Interfaces; 2020 Aug; 12(31):35049-35057. PubMed ID: 32667773
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-Rate and Long-Term Cycle Stability of Li-S Batteries Enabled by Li
    Wang X; Bi X; Wang S; Zhang Y; Du H; Lu J
    ACS Appl Mater Interfaces; 2018 May; 10(19):16552-16560. PubMed ID: 29671567
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single-Atom Iron and Doped Sulfur Improve the Catalysis of Polysulfide Conversion for Obtaining High-Performance Lithium-Sulfur Batteries.
    Zhao H; Tian B; Su C; Li Y
    ACS Appl Mater Interfaces; 2021 Feb; 13(6):7171-7177. PubMed ID: 33528984
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Polysulfide-Immobilizing Polymer Retards the Shuttling of Polysulfide Intermediates in Lithium-Sulfur Batteries.
    Tu S; Chen X; Zhao X; Cheng M; Xiong P; He Y; Zhang Q; Xu Y
    Adv Mater; 2018 Nov; 30(45):e1804581. PubMed ID: 30255611
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Challenges and prospects of lithium-sulfur batteries.
    Manthiram A; Fu Y; Su YS
    Acc Chem Res; 2013 May; 46(5):1125-34. PubMed ID: 23095063
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mitigation of Shuttle Effect in Li-S Battery Using a Self-Assembled Ultrathin Molybdenum Disulfide Interlayer.
    Yu X; Zhou G; Cui Y
    ACS Appl Mater Interfaces; 2019 Jan; 11(3):3080-3086. PubMed ID: 30588794
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sulfur-impregnated core-shell hierarchical porous carbon for lithium-sulfur batteries.
    Zhang FF; Huang G; Wang XX; Qin YL; Du XC; Yin DM; Liang F; Wang LM
    Chemistry; 2014 Dec; 20(52):17523-9. PubMed ID: 25346404
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Atomic Iron Catalysis of Polysulfide Conversion in Lithium-Sulfur Batteries.
    Liu Z; Zhou L; Ge Q; Chen R; Ni M; Utetiwabo W; Zhang X; Yang W
    ACS Appl Mater Interfaces; 2018 Jun; 10(23):19311-19317. PubMed ID: 29800511
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In situ wrapping of the cathode material in lithium-sulfur batteries.
    Hu C; Chen H; Shen Y; Lu D; Zhao Y; Lu AH; Wu X; Lu W; Chen L
    Nat Commun; 2017 Sep; 8(1):479. PubMed ID: 28883433
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rationally designing a Ti
    Xiao T; Zhang Y; Xi W; Wang R; Gong Y; He B; Wang H; Jin J
    Nanoscale; 2022 Nov; 14(43):16139-16147. PubMed ID: 36259988
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A 3D conductive network of porous carbon nanoparticles interconnected with carbon nanotubes as the sulfur host for long cycle life lithium-sulfur batteries.
    Luo S; Sun W; Ke J; Wang Y; Liu S; Hong X; Li Y; Chen Y; Xie W; Zheng C
    Nanoscale; 2018 Dec; 10(47):22601-22611. PubMed ID: 30480697
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A special core-shell ZnS-CNTs/S@NH cathode constructed to elevate electrochemical performances of lithium-sulfur batteries.
    Shi T; Zhao C; Zhou Y; Yin H; Song C; Qin L; Wang Z; Shao H; Yu K
    J Colloid Interface Sci; 2021 Oct; 599():416-426. PubMed ID: 33962202
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation on the Electrochemical Properties of Antimony Tin Oxide Nanoparticle-Modified Graphene Aerogel as Cathode Matrix in Lithium-Sulfur Battery.
    Yan Y; Lin J; Chen S; Zhang S; Yang R; Xu Y; Han T
    J Nanosci Nanotechnol; 2020 Nov; 20(11):7027-7033. PubMed ID: 32604552
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Confinement of polysulfides within bi-functional metal-organic frameworks for high performance lithium-sulfur batteries.
    Hong XJ; Tan TX; Guo YK; Tang XY; Wang JY; Qin W; Cai YP
    Nanoscale; 2018 Feb; 10(6):2774-2780. PubMed ID: 29323375
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.