BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

40 related articles for article (PubMed ID: 30543834)

  • 1. A dual role of TGF-β in human osteoclast differentiation mediated by Smad1 versus Smad3 signaling.
    Lee B; Oh Y; Jo S; Kim TH; Ji JD
    Immunol Lett; 2019 Feb; 206():33-40. PubMed ID: 30543834
    [TBL] [Abstract][Full Text] [Related]  

  • 2. p-Smad3 differentially regulates the cytological behavior of osteoclasts before and after osteoblasts maturation.
    Ye J; Hua Z; Xiao J; Shao Y; Li S; Yin H; Wu M; Rong Y; Hong B; Guo Y; Ma Y; Wang J
    Mol Biol Rep; 2024 Apr; 51(1):525. PubMed ID: 38632128
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Periodontal ligament-associated protein-1 knockout mice regulate the differentiation of osteoclasts and osteoblasts through TGF-β1/Smad signaling pathway.
    Liu S; Yan X; Guo J; An H; Li X; Yang L; Yu X; Li S
    J Cell Physiol; 2024 Mar; 239(3):e31062. PubMed ID: 37357387
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Study on the interaction protein of transcription factor Smad3 based on TurboID proximity labeling technology.
    Yan B; Zeng T; Liu X; Guo Y; Chen H; Guo S; Liu W
    Genomics; 2024 May; 116(3):110839. PubMed ID: 38537808
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of TGF‑β1 on the migration and morphology of RAW264.7 cells in vitro.
    Ueta M; Takaoka K; Yamamura M; Maeda H; Tamaoka J; Nakano Y; Noguchi K; Kishimoto H
    Mol Med Rep; 2019 Nov; 20(5):4331-4339. PubMed ID: 31545488
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reactive Oxygen Species in Osteoclast Differentiation and Possible Pharmaceutical Targets of ROS-Mediated Osteoclast Diseases.
    Agidigbi TS; Kim C
    Int J Mol Sci; 2019 Jul; 20(14):. PubMed ID: 31336616
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of the TGF-β Superfamily on Osteoclasts/Osteoblasts Balance in Physiological and Pathological Bone Conditions.
    Jann J; Gascon S; Roux S; Faucheux N
    Int J Mol Sci; 2020 Oct; 21(20):. PubMed ID: 33066607
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Somatic SMAD3-activating mutations cause melorheostosis by up-regulating the TGF-β/SMAD pathway.
    Kang H; Jha S; Ivovic A; Fratzl-Zelman N; Deng Z; Mitra A; Cabral WA; Hanson EP; Lange E; Cowen EW; Katz J; Roschger P; Klaushofer K; Dale RK; Siegel RM; Bhattacharyya T; Marini JC
    J Exp Med; 2020 May; 217(5):. PubMed ID: 32232430
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Inflammatory Contribution of B-Lymphocytes and Neutrophils in Progression to Osteoporosis.
    Frase D; Lee C; Nachiappan C; Gupta R; Akkouch A
    Cells; 2023 Jun; 12(13):. PubMed ID: 37443778
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Progress of Wnt Signaling Pathway in Osteoporosis.
    Gao Y; Chen N; Fu Z; Zhang Q
    Biomolecules; 2023 Mar; 13(3):. PubMed ID: 36979418
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioinformatics identification and experimental validation of m6A-related diagnostic biomarkers in the subtype classification of blood monocytes from postmenopausal osteoporosis patients.
    Zhang P; Chen H; Xie B; Zhao W; Shang Q; He J; Shen G; Yu X; Zhang Z; Zhu G; Chen G; Yu F; Liang D; Tang J; Cui J; Liu Z; Ren H; Jiang X
    Front Endocrinol (Lausanne); 2023; 14():990078. PubMed ID: 36967763
    [TBL] [Abstract][Full Text] [Related]  

  • 12. miRNA-Based Early Healing Mechanism of Extraction Sockets: miR-190a-5p, a Potential Enhancer of Bone Healing.
    Lee SK; Jung SH; Song SJ; Lee IG; Choi JY; Zadeh H; Lee DW; Pi SH; You HK
    Biomed Res Int; 2022; 2022():7194640. PubMed ID: 36317115
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cytokine-mediated immunomodulation of osteoclastogenesis.
    Zhou P; Zheng T; Zhao B
    Bone; 2022 Nov; 164():116540. PubMed ID: 36031187
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interspecies Single-Cell RNA-Seq Analysis Reveals the Novel Trajectory of Osteoclast Differentiation and Therapeutic Targets.
    Omata Y; Okada H; Uebe S; Izawa N; Ekici AB; Sarter K; Saito T; Schett G; Tanaka S; Zaiss MM
    JBMR Plus; 2022 Jul; 6(7):e10631. PubMed ID: 35866155
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TGFβ reprograms TNF stimulation of macrophages towards a non-canonical pathway driving inflammatory osteoclastogenesis.
    Xia Y; Inoue K; Du Y; Baker SJ; Reddy EP; Greenblatt MB; Zhao B
    Nat Commun; 2022 Jul; 13(1):3920. PubMed ID: 35798734
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Auxiliary Role of Heparin in Bone Regeneration and its Application in Bone Substitute Materials.
    Wang J; Xiao L; Wang W; Zhang D; Ma Y; Zhang Y; Wang X
    Front Bioeng Biotechnol; 2022; 10():837172. PubMed ID: 35646879
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Role Of BMPs in the Regulation of Osteoclasts Resorption and Bone Remodeling: From Experimental Models to Clinical Applications.
    Bordukalo-Nikšić T; Kufner V; Vukičević S
    Front Immunol; 2022; 13():869422. PubMed ID: 35558080
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Targeting transforming growth factor-β signalling for cancer prevention and intervention: Recent advances in developing small molecules of natural origin.
    Tewari D; Priya A; Bishayee A; Bishayee A
    Clin Transl Med; 2022 Apr; 12(4):e795. PubMed ID: 35384373
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Rising Era of "Immunoporosis": Role of Immune System in the Pathophysiology of Osteoporosis.
    Srivastava RK; Sapra L
    J Inflamm Res; 2022; 15():1667-1698. PubMed ID: 35282271
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anti-Müllerian Hormone Negatively Regulates Osteoclast Differentiation by Suppressing the Receptor Activator of Nuclear Factor-κB Ligand Pathway.
    Kim JH; Yang YR; Kwon KS; Kim N
    J Bone Metab; 2021 Aug; 28(3):223-230. PubMed ID: 34520656
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 2.