BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 30543836)

  • 1. STAC proteins: The missing link in skeletal muscle EC coupling and new regulators of calcium channel function.
    Flucher BE; Campiglio M
    Biochim Biophys Acta Mol Cell Res; 2019 Jul; 1866(7):1101-1110. PubMed ID: 30543836
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural insights into binding of STAC proteins to voltage-gated calcium channels.
    Wong King Yuen SM; Campiglio M; Tung CC; Flucher BE; Van Petegem F
    Proc Natl Acad Sci U S A; 2017 Nov; 114(45):E9520-E9528. PubMed ID: 29078335
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ca
    Campiglio M; Dyrda A; Tuinte WE; Török E
    Handb Exp Pharmacol; 2023; 279():3-39. PubMed ID: 36592225
    [TBL] [Abstract][Full Text] [Related]  

  • 4. STAC3 incorporation into skeletal muscle triads occurs independent of the dihydropyridine receptor.
    Campiglio M; Kaplan MM; Flucher BE
    J Cell Physiol; 2018 Dec; 233(12):9045-9051. PubMed ID: 30071129
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure and function of STAC proteins: Calcium channel modulators and critical components of muscle excitation-contraction coupling.
    Rufenach B; Van Petegem F
    J Biol Chem; 2021 Jul; 297(1):100874. PubMed ID: 34129875
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stac adaptor proteins regulate trafficking and function of muscle and neuronal L-type Ca2+ channels.
    Polster A; Perni S; Bichraoui H; Beam KG
    Proc Natl Acad Sci U S A; 2015 Jan; 112(2):602-6. PubMed ID: 25548159
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stac proteins associate with the critical domain for excitation-contraction coupling in the II-III loop of Ca
    Polster A; Nelson BR; Papadopoulos S; Olson EN; Beam KG
    J Gen Physiol; 2018 Apr; 150(4):613-624. PubMed ID: 29467163
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stac3 has a direct role in skeletal muscle-type excitation-contraction coupling that is disrupted by a myopathy-causing mutation.
    Polster A; Nelson BR; Olson EN; Beam KG
    Proc Natl Acad Sci U S A; 2016 Sep; 113(39):10986-91. PubMed ID: 27621462
    [TBL] [Abstract][Full Text] [Related]  

  • 9. De novo reconstitution reveals the proteins required for skeletal muscle voltage-induced Ca
    Perni S; Lavorato M; Beam KG
    Proc Natl Acad Sci U S A; 2017 Dec; 114(52):13822-13827. PubMed ID: 29229815
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The distal C terminus of the dihydropyridine receptor β
    Dayal A; Perni S; Franzini-Armstrong C; Beam KG; Grabner M
    Proc Natl Acad Sci U S A; 2022 May; 119(19):e2201136119. PubMed ID: 35507876
    [TBL] [Abstract][Full Text] [Related]  

  • 11. STAC proteins associate to the IQ domain of Ca
    Campiglio M; Costé de Bagneaux P; Ortner NJ; Tuluc P; Van Petegem F; Flucher BE
    Proc Natl Acad Sci U S A; 2018 Feb; 115(6):1376-1381. PubMed ID: 29363593
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Voltage sensing mechanism in skeletal muscle excitation-contraction coupling: coming of age or midlife crisis?
    Hernández-Ochoa EO; Schneider MF
    Skelet Muscle; 2018 Jul; 8(1):22. PubMed ID: 30025545
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rem uncouples excitation-contraction coupling in adult skeletal muscle fibers.
    Beqollari D; Romberg CF; Filipova D; Meza U; Papadopoulos S; Bannister RA
    J Gen Physiol; 2015 Jul; 146(1):97-108. PubMed ID: 26078055
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transport of the alpha subunit of the voltage gated L-type calcium channel through the sarcoplasmic reticulum occurs prior to localization to triads and requires the beta subunit but not Stac3 in skeletal muscles.
    Linsley JW; Hsu IU; Wang W; Kuwada JY
    Traffic; 2017 Sep; 18(9):622-632. PubMed ID: 28697281
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Malignant hyperthermia susceptibility arising from altered resting coupling between the skeletal muscle L-type Ca2+ channel and the type 1 ryanodine receptor.
    Eltit JM; Bannister RA; Moua O; Altamirano F; Hopkins PM; Pessah IN; Molinski TF; López JR; Beam KG; Allen PD
    Proc Natl Acad Sci U S A; 2012 May; 109(20):7923-8. PubMed ID: 22547813
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Core skeletal muscle ryanodine receptor calcium release complex.
    Dulhunty AF; Wei-LaPierre L; Casarotto MG; Beard NA
    Clin Exp Pharmacol Physiol; 2017 Jan; 44(1):3-12. PubMed ID: 27696487
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ca2+-dependent excitation-contraction coupling triggered by the heterologous cardiac/brain DHPR beta2a-subunit in skeletal myotubes.
    Sheridan DC; Carbonneau L; Ahern CA; Nataraj P; Coronado R
    Biophys J; 2003 Dec; 85(6):3739-57. PubMed ID: 14645065
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of the excitation-contraction coupling machinery and its relation to myofibrillogenesis in human iPSC-derived skeletal myocytes.
    Lainé J; Skoglund G; Fournier E; Tabti N
    Skelet Muscle; 2018 Jan; 8(1):1. PubMed ID: 29304851
    [TBL] [Abstract][Full Text] [Related]  

  • 19. STAC3 determines the slow activation kinetics of Ca
    Tuinte WE; Török E; Mahlknecht I; Tuluc P; Flucher BE; Campiglio M
    J Cell Physiol; 2022 Nov; 237(11):4197-4214. PubMed ID: 36161458
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bridging the myoplasmic gap II: more recent advances in skeletal muscle excitation-contraction coupling.
    Bannister RA
    J Exp Biol; 2016 Jan; 219(Pt 2):175-82. PubMed ID: 26792328
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.