These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 30543979)

  • 41. Evaluating the impacts of climate and land-use change on the hydrology and nutrient yield in a transboundary river basin: A case study in the 3S River Basin (Sekong, Sesan, and Srepok).
    Trang NTT; Shrestha S; Shrestha M; Datta A; Kawasaki A
    Sci Total Environ; 2017 Jan; 576():586-598. PubMed ID: 27810747
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Public-Private Partnerships Working Beyond Scale Challenges toward Water Quality Improvements from Private Lands.
    Enloe SK; Schulte LA; Tyndall JC
    Environ Manage; 2017 Oct; 60(4):574-587. PubMed ID: 28664235
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Dissolved inorganic and organic carbon export from tile-drained midwestern agricultural systems.
    Schilling KE; Streeter MT; Jones CS; Jacobson PJ
    Sci Total Environ; 2023 Jul; 883():163607. PubMed ID: 37098395
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Rye cover crop and gamagrass strip effects on NO3 concentration and load in tile drainage.
    Kaspar TC; Jaynes DB; Parkin TB; Moorman TB
    J Environ Qual; 2007; 36(5):1503-11. PubMed ID: 17766830
    [TBL] [Abstract][Full Text] [Related]  

  • 45. SWAT-MODSIM-PSO optimization of multi-crop planning in the Karkheh River Basin, Iran, under the impacts of climate change.
    Fereidoon M; Koch M
    Sci Total Environ; 2018 Jul; 630():502-516. PubMed ID: 29486443
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Quantifying the effectiveness of a saturated buffer to reduce tile NO
    Streeter MT; Schilling KE
    Environ Monit Assess; 2021 Jul; 193(8):500. PubMed ID: 34291322
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Reconnecting tile drainage to riparian buffer hydrology for enhanced nitrate removal.
    Jaynes DB; Isenhart TM
    J Environ Qual; 2014 Mar; 43(2):631-8. PubMed ID: 25602664
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Simulating internal watershed processes using multiple SWAT models.
    Apostel A; Kalcic M; Dagnew A; Evenson G; Kast J; King K; Martin J; Muenich RL; Scavia D
    Sci Total Environ; 2021 Mar; 759():143920. PubMed ID: 33339624
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Modelling nutrient fluxes from diffuse and point emissions to river loads: the Estonian part of the transboundary Lake Peipsi/Chudskoe drainage basin (Russia/Estonia/Latvia).
    Mourad D; van der Perk M
    Water Sci Technol; 2004; 49(3):21-8. PubMed ID: 15053095
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Influences of agricultural land use composition and distribution on nitrogen export from a subtropical watershed in China.
    Li W; Zhai L; Lei Q; Wollheim WM; Liu J; Liu H; Hu W; Ren T; Wang H; Liu S
    Sci Total Environ; 2018 Nov; 642():21-32. PubMed ID: 29894879
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Evaluating the impact of field-scale management strategies on sediment transport to the watershed outlet.
    Sommerlot AR; Pouyan Nejadhashemi A; Woznicki SA; Prohaska MD
    J Environ Manage; 2013 Oct; 128():735-48. PubMed ID: 23851319
    [TBL] [Abstract][Full Text] [Related]  

  • 52. An integrated modeling approach for estimating the water quality benefits of conservation practices at the river basin scale.
    Santhi C; Kannan N; White M; Di Luzio M; Arnold JG; Wang X; Williams JR
    J Environ Qual; 2014 Jan; 43(1):177-98. PubMed ID: 25602551
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Use of the soil and water assessment tool to scale sediment delivery from field to watershed in an agricultural landscape with topographic depressions.
    Almendinger JE; Murphy MS; Ulrich JS
    J Environ Qual; 2014 Jan; 43(1):9-17. PubMed ID: 25602535
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Nitrogen mass balance of a tile-drained agricultural watershed in East-Central Illinois.
    Gentry LE; David MB; Below FE; Royer TV; McIsaac GF
    J Environ Qual; 2009; 38(5):1841-7. PubMed ID: 19643749
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Hydrologic and atrazine simulation of the Cedar Creek Watershed using the SWAT model.
    Larose M; Heathman GC; Norton LD; Engel B
    J Environ Qual; 2007; 36(2):521-31. PubMed ID: 17332256
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Application of integrated GIS and multimedia modeling on NPS pollution evaluation.
    Lin CE; Kao CM; Lai YC; Shan WL; Wu CY
    Environ Monit Assess; 2009 Nov; 158(1-4):319-31. PubMed ID: 18956245
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Nitrate in tile drainage of the semiarid Palouse Basin.
    Keller CK; Butcher CN; Smith JL; Allen-King RM
    J Environ Qual; 2008; 37(2):353-61. PubMed ID: 18268297
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Adapting SWAT hillslope erosion model to predict sediment concentrations and yields in large Basins.
    Vigiak O; Malagó A; Bouraoui F; Vanmaercke M; Poesen J
    Sci Total Environ; 2015 Dec; 538():855-75. PubMed ID: 26356993
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Phosphorus losses from agricultural areas in river basins: effects and uncertainties of targeted mitigation measures.
    Kronvang B; Bechmann M; Lundekvam H; Behrendt H; Rubaek GH; Schoumans OF; Syversen N; Andersen HE; Hoffmann CC
    J Environ Qual; 2005; 34(6):2129-44. PubMed ID: 16275713
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Water quality modeling of fertilizer management impacts on nitrate losses in tile drains at the field scale.
    Nangia V; Gowda PH; Mulla DJ; Sands GR
    J Environ Qual; 2008; 37(2):296-307. PubMed ID: 18268291
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.