These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 30544013)
1. Scalar relaxation of NMR transitions at ultralow magnetic field. Tayler MCD; Gladden LF J Magn Reson; 2019 Jan; 298():101-106. PubMed ID: 30544013 [TBL] [Abstract][Full Text] [Related]
2. Nuclear singlet relaxation by scalar relaxation of the second kind in the slow-fluctuation regime. Elliott SJ; Bengs C; Brown LJ; Hill-Cousins JT; O'Leary DJ; Pileio G; Levitt MH J Chem Phys; 2019 Feb; 150(6):064315. PubMed ID: 30769970 [TBL] [Abstract][Full Text] [Related]
3. NMR relaxation in porous materials at zero and ultralow magnetic fields. Tayler MCD; Ward-Williams J; Gladden LF J Magn Reson; 2018 Dec; 297():1-8. PubMed ID: 30316016 [TBL] [Abstract][Full Text] [Related]
4. Scalar relaxation of the second kind - a potential source of information on the dynamics of molecular movements. 2. Magnetic dipole moments and magnetic shielding of bromine nuclei. Gryff-Keller A; Molchanov S; Wodyński A J Phys Chem A; 2014 Jan; 118(1):128-33. PubMed ID: 24328298 [TBL] [Abstract][Full Text] [Related]
5. Multiplets at zero magnetic field: the geometry of zero-field NMR. Butler MC; Ledbetter MP; Theis T; Blanchard JW; Budker D; Pines A J Chem Phys; 2013 May; 138(18):184202. PubMed ID: 23676037 [TBL] [Abstract][Full Text] [Related]
6. High resolution NMR study of T1 magnetic relaxation dispersion. I. Theoretical considerations of relaxation of scalar coupled spins at arbitrary magnetic field. Ivanov K; Yurkovskaya A; Vieth HM J Chem Phys; 2008 Dec; 129(23):234513. PubMed ID: 19102544 [TBL] [Abstract][Full Text] [Related]
7. Scalar relaxation of the second kind. A potential source of information on the dynamics of molecular movements. 3. A (13)C nuclear spin relaxation study of CBrX3 (X = Cl, CH3, Br) molecules. Kubica D; Wodyński A; Kraska-Dziadecka A; Gryff-Keller A J Phys Chem A; 2014 Apr; 118(16):2995-3003. PubMed ID: 24679098 [TBL] [Abstract][Full Text] [Related]
8. Finding the true spin-lattice relaxation time for half-integral nuclei with non-zero quadrupole couplings. Yesinowski JP J Magn Reson; 2015 Mar; 252():135-44. PubMed ID: 25700115 [TBL] [Abstract][Full Text] [Related]
9. Accelerated acquisition of wideline solid-state NMR spectra of spin 3/2 nuclei by frequency-stepped indirect detection experiments. Lamahewage SNS; Atterberry BA; Dorn RW; Gi E; Kimball MR; Blümel J; Vela J; Rossini AJ Phys Chem Chem Phys; 2024 Feb; 26(6):5081-5096. PubMed ID: 38259035 [TBL] [Abstract][Full Text] [Related]
10. Earth's magnetic field enabled scalar coupling relaxation of 13C nuclei bound to fast-relaxing quadrupolar 14N in amide groups. Chiavazza E; Kubala E; Gringeri CV; Düwel S; Durst M; Schulte RF; Menzel MI J Magn Reson; 2013 Feb; 227():35-8. PubMed ID: 23262330 [TBL] [Abstract][Full Text] [Related]
11. A method for measurement of spin-spin couplings with sub-mHz precision using zero- to ultralow-field nuclear magnetic resonance. Wilzewski A; Afach S; Blanchard JW; Budker D J Magn Reson; 2017 Nov; 284():66-72. PubMed ID: 28961479 [TBL] [Abstract][Full Text] [Related]
12. Quadrupole relaxation enhancement--application to molecular crystals. Kruk D; Kubica A; Masierak W; Privalov AF; Wojciechowski M; Medycki W Solid State Nucl Magn Reson; 2011 Oct; 40(3):114-20. PubMed ID: 21906916 [TBL] [Abstract][Full Text] [Related]
13. Invited Review Article: Instrumentation for nuclear magnetic resonance in zero and ultralow magnetic field. Tayler MCD; Theis T; Sjolander TF; Blanchard JW; Kentner A; Pustelny S; Pines A; Budker D Rev Sci Instrum; 2017 Sep; 88(9):091101. PubMed ID: 28964224 [TBL] [Abstract][Full Text] [Related]
14. Field-dependent nuclear relaxation of spins 1/2 induced by dipole-dipole couplings to quadrupole spins: LaF3 crystals as an example. Kruk D; Lips O J Magn Reson; 2006 Apr; 179(2):250-62. PubMed ID: 16423544 [TBL] [Abstract][Full Text] [Related]
15. Scalar relaxation of the second kind. A potential source of information on the dynamics of molecular movements. 4. Molecules with collinear C-H and C-Br bonds. Bernatowicz P; Kubica D; Ociepa M; Wodyński A; Gryff-Keller A J Phys Chem A; 2014 Jun; 118(23):4063-70. PubMed ID: 24835107 [TBL] [Abstract][Full Text] [Related]
16. Line narrowing of I = 12 spins coupled to quadrupolar nuclei in liquids: effects of weak decoupling fields. Bendel P; Baram A J Magn Reson; 1999 Nov; 141(1):121-32. PubMed ID: 10527749 [TBL] [Abstract][Full Text] [Related]
17. Magnetization-recovery experiments for static and MAS-NMR of I=3/2 nuclei. Yesinowski JP J Magn Reson; 2006 May; 180(1):147-61. PubMed ID: 16490373 [TBL] [Abstract][Full Text] [Related]
18. Direct observation of ¹⁷O-¹⁸⁵/¹⁸⁷Re ¹J-coupling in perrhenates by solid-state ¹⁷O VT MAS NMR: temperature and self-decoupling effects. Jakobsen HJ; Bildsøe H; Brorson M; Gan Z; Hung I J Magn Reson; 2013 May; 230():98-110. PubMed ID: 23454579 [TBL] [Abstract][Full Text] [Related]
19. Temporal characteristics of NMR signals from spin 3/2 nuclei of incompletely disordered systems. Woessner DE; Bansal N J Magn Reson; 1998 Jul; 133(1):21-35. PubMed ID: 9654465 [TBL] [Abstract][Full Text] [Related]
20. High resolution NMR study of T1 magnetic relaxation dispersion. III. Influence of spin 1/2 hetero-nuclei on spin relaxation and polarization transfer among strongly coupled protons. Korchak SE; Ivanov KL; Pravdivtsev AN; Yurkovskaya AV; Kaptein R; Vieth HM J Chem Phys; 2012 Sep; 137(9):094503. PubMed ID: 22957577 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]