BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 30544151)

  • 21. Archaeal type III RuBisCOs function in a pathway for AMP metabolism.
    Sato T; Atomi H; Imanaka T
    Science; 2007 Feb; 315(5814):1003-6. PubMed ID: 17303759
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Phylogenetic and evolutionary relationships of RubisCO and the RubisCO-like proteins and the functional lessons provided by diverse molecular forms.
    Tabita FR; Hanson TE; Satagopan S; Witte BH; Kreel NE
    Philos Trans R Soc Lond B Biol Sci; 2008 Aug; 363(1504):2629-40. PubMed ID: 18487131
    [TBL] [Abstract][Full Text] [Related]  

  • 23. CPR bacteria and DPANN archaea play pivotal roles in response of microbial community to antibiotic stress in groundwater.
    Tang M; Chen Q; Zhong H; Liu S; Sun W
    Water Res; 2024 Mar; 251():121137. PubMed ID: 38246077
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Metagenomic analysis of a high carbon dioxide subsurface microbial community populated by chemolithoautotrophs and bacteria and archaea from candidate phyla.
    Emerson JB; Thomas BC; Alvarez W; Banfield JF
    Environ Microbiol; 2016 Jun; 18(6):1686-703. PubMed ID: 25727367
    [TBL] [Abstract][Full Text] [Related]  

  • 25. RubisCO gene clusters found in a metagenome microarray from acid mine drainage.
    Guo X; Yin H; Cong J; Dai Z; Liang Y; Liu X
    Appl Environ Microbiol; 2013 Mar; 79(6):2019-26. PubMed ID: 23335778
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Form III RubisCO-mediated transaldolase variant of the Calvin cycle in a chemolithoautotrophic bacterium.
    Frolov EN; Kublanov IV; Toshchakov SV; Lunev EA; Pimenov NV; Bonch-Osmolovskaya EA; Lebedinsky AV; Chernyh NA
    Proc Natl Acad Sci U S A; 2019 Sep; 116(37):18638-18646. PubMed ID: 31451656
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparative Genomics Provides Insights into the Genetic Diversity and Evolution of the DPANN Superphylum.
    Li L; Liu Z; Zhou Z; Zhang M; Meng D; Liu X; Huang Y; Li X; Jiang Z; Zhong S; Drewniak L; Yang Z; Li Q; Liu Y; Nan X; Jiang B; Jiang C; Yin H
    mSystems; 2021 Aug; 6(4):e0060221. PubMed ID: 34254817
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A short history of RubisCO: the rise and fall (?) of Nature's predominant CO
    Erb TJ; Zarzycki J
    Curr Opin Biotechnol; 2018 Feb; 49():100-107. PubMed ID: 28843191
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Widespread distribution of archaeal reverse gyrase in thermophilic bacteria suggests a complex history of vertical inheritance and lateral gene transfers.
    Brochier-Armanet C; Forterre P
    Archaea; 2007 May; 2(2):83-93. PubMed ID: 17350929
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Complementation analysis and regulation of CO2 fixation gene expression in a ribulose 1,5-bisphosphate carboxylase-oxygenase deletion strain of Rhodospirillum rubrum.
    Falcone DL; Tabita FR
    J Bacteriol; 1993 Aug; 175(16):5066-77. PubMed ID: 8349547
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Modified pathway to synthesize ribulose 1,5-bisphosphate in methanogenic archaea.
    Finn MW; Tabita FR
    J Bacteriol; 2004 Oct; 186(19):6360-6. PubMed ID: 15375115
    [TBL] [Abstract][Full Text] [Related]  

  • 32. New roads lead to Rubisco in archaebacteria.
    Mueller-Cajar O; Badger MR
    Bioessays; 2007 Aug; 29(8):722-4. PubMed ID: 17621634
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Seeking active RubisCOs from the currently uncultured microbial majority colonizing deep-sea hydrothermal vent environments.
    Böhnke S; Perner M
    ISME J; 2019 Oct; 13(10):2475-2488. PubMed ID: 31182769
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The comprehensive profile of fermentation products during in situ CO2 recycling by Rubisco-based engineered Escherichia coli.
    Yang CH; Liu EJ; Chen YL; Ou-Yang FY; Li SY
    Microb Cell Fact; 2016 Aug; 15(1):133. PubMed ID: 27485110
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO)-mediated de novo synthesis of glycolate-based polyhydroxyalkanoate in Escherichia coli.
    Matsumoto K; Saito J; Yokoo T; Hori C; Nagata A; Kudoh Y; Ooi T; Taguchi S
    J Biosci Bioeng; 2019 Sep; 128(3):302-306. PubMed ID: 30987875
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Life without light: microbial diversity and evidence of sulfur- and ammonium-based chemolithotrophy in Movile Cave.
    Chen Y; Wu L; Boden R; Hillebrand A; Kumaresan D; Moussard H; Baciu M; Lu Y; Colin Murrell J
    ISME J; 2009 Sep; 3(9):1093-104. PubMed ID: 19474813
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Diversity and distribution of autotrophic microbial community along environmental gradients in grassland soils on the Tibetan Plateau.
    Guo G; Kong W; Liu J; Zhao J; Du H; Zhang X; Xia P
    Appl Microbiol Biotechnol; 2015 Oct; 99(20):8765-76. PubMed ID: 26084890
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Wide range of metabolic adaptations to the acquisition of the Calvin cycle revealed by comparison of microbial genomes.
    Asplund-Samuelsson J; Hudson EP
    PLoS Comput Biol; 2021 Feb; 17(2):e1008742. PubMed ID: 33556078
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Diversity of green-like and red-like ribulose-1,5-bisphosphate carboxylase/oxygenase large-subunit genes (cbbL) in differently managed agricultural soils.
    Selesi D; Schmid M; Hartmann A
    Appl Environ Microbiol; 2005 Jan; 71(1):175-84. PubMed ID: 15640185
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The rise of diversity in metabolic platforms across the Candidate Phyla Radiation.
    Jaffe AL; Castelle CJ; Matheus Carnevali PB; Gribaldo S; Banfield JF
    BMC Biol; 2020 Jun; 18(1):69. PubMed ID: 32560683
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.