These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 30544181)

  • 1. Active site complementation and hexameric arrangement in the GH family 29; a structure-function study of α-l-fucosidase isoenzyme 1 from Paenibacillus thiaminolyticus.
    Kovalová T; Koval T; Benešová E; Vodicková P; Spiwok V; Lipovová P; Dohnálek J
    Glycobiology; 2019 Jan; 29(1):59-73. PubMed ID: 30544181
    [TBL] [Abstract][Full Text] [Related]  

  • 2. α-L-fucosidase from Paenibacillus thiaminolyticus: its hydrolytic and transglycosylation abilities.
    Benesová E; Lipovová P; Dvoráková H; Králová B
    Glycobiology; 2013 Sep; 23(9):1052-65. PubMed ID: 23723440
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The first structure-function study of GH151 α-l-fucosidase uncovers new oligomerization pattern, active site complementation, and selective substrate specificity.
    Koval'ová T; Kovaľ T; Stránský J; Kolenko P; Dušková J; Švecová L; Vodičková P; Spiwok V; Benešová E; Lipovová P; Dohnálek J
    FEBS J; 2022 Aug; 289(16):4998-5020. PubMed ID: 35113503
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alpha-L-fucosidase isoenzyme iso2 from Paenibacillus thiaminolyticus.
    Benešová E; Lipovová P; Krejzová J; Kovaľová T; Buchtová P; Spiwok V; Králová B
    BMC Biotechnol; 2015 May; 15():36. PubMed ID: 26013545
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbohydrate-binding architecture of the multi-modular α-1,6-glucosyltransferase from
    Fujimoto Z; Suzuki N; Kishine N; Ichinose H; Momma M; Kimura A; Funane K
    Biochem J; 2017 Aug; 474(16):2763-2778. PubMed ID: 28698247
    [No Abstract]   [Full Text] [Related]  

  • 6. Purification, expression and characterization of a novel α-l-fucosidase from a marine bacteria Wenyingzhuangia fucanilytica.
    Dong S; Chang Y; Shen J; Xue C; Chen F
    Protein Expr Purif; 2017 Jan; 129():9-17. PubMed ID: 27576198
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of an α-l-fucosidase from the periodontal pathogen Tannerella forsythia.
    Megson ZA; Koerdt A; Schuster H; Ludwig R; Janesch B; Frey A; Naylor K; Wilson IB; Stafford GP; Messner P; Schäffer C
    Virulence; 2015; 6(3):282-92. PubMed ID: 25831954
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transglycosylating β-d-galactosidase and α-l-fucosidase from Paenibacillus sp. 3179 from a hot spring in East Greenland.
    Thøgersen MS; Christensen SJ; Jepsen M; Pedersen LH; Stougaard P
    Microbiologyopen; 2020 Mar; 9(3):e980. PubMed ID: 31868312
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure and substrate specificity of a eukaryotic fucosidase from Fusarium graminearum.
    Cao H; Walton JD; Brumm P; Phillips GN
    J Biol Chem; 2014 Sep; 289(37):25624-38. PubMed ID: 25086049
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystal Structure of Chitinase ChiW from Paenibacillus sp. str. FPU-7 Reveals a Novel Type of Bacterial Cell-Surface-Expressed Multi-Modular Enzyme Machinery.
    Itoh T; Hibi T; Suzuki F; Sugimoto I; Fujiwara A; Inaka K; Tanaka H; Ohta K; Fujii Y; Taketo A; Kimoto H
    PLoS One; 2016; 11(12):e0167310. PubMed ID: 27907169
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Endo-fucoidan hydrolases from glycoside hydrolase family 107 (GH107) display structural and mechanistic similarities to α-l-fucosidases from GH29.
    Vickers C; Liu F; Abe K; Salama-Alber O; Jenkins M; Springate CMK; Burke JE; Withers SG; Boraston AB
    J Biol Chem; 2018 Nov; 293(47):18296-18308. PubMed ID: 30282808
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure and function of microbial α-l-fucosidases: a mini review.
    Wu H; Owen CD; Juge N
    Essays Biochem; 2023 Apr; 67(3):399-414. PubMed ID: 36805644
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two distinct alpha-L-fucosidases from Bifidobacterium bifidum are essential for the utilization of fucosylated milk oligosaccharides and glycoconjugates.
    Ashida H; Miyake A; Kiyohara M; Wada J; Yoshida E; Kumagai H; Katayama T; Yamamoto K
    Glycobiology; 2009 Sep; 19(9):1010-7. PubMed ID: 19520709
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of five marine family 29 glycoside hydrolases reveals an α-L-fucosidase targeting specifically Fuc(α1,4)GlcNAc.
    Schultz-Johansen M; Stougaard P; Svensson B; Teze D
    Glycobiology; 2022 May; 32(6):529-539. PubMed ID: 35137077
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differences in the substrate specificities and active-site structures of two α-L-fucosidases (glycoside hydrolase family 29) from Bacteroides thetaiotaomicron.
    Sakurama H; Tsutsumi E; Ashida H; Katayama T; Yamamoto K; Kumagai H
    Biosci Biotechnol Biochem; 2012; 76(5):1022-4. PubMed ID: 22738979
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improvement of Fucosylated Oligosaccharides Synthesis by α-L-Fucosidase from Thermotoga maritima in Water-Organic Cosolvent Reaction System.
    Robles-Arias MA; García-Garibay M; Alatorre-Santamaría S; Tello-Solís SR; Guzmán-Rodriguez F; Gómez-Ruiz L; Rodríguez-Serrano G; Cruz-Guerrero AE
    Appl Biochem Biotechnol; 2021 Nov; 193(11):3553-3569. PubMed ID: 34312785
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Paenibacillus curdlanolyticus B-6 xylanase Xyn10C capable of producing a doubly arabinose-substituted xylose, α-L-Araf-(1→2)-[α-L-Araf-(1→3)]-D-Xylp, from rye arabinoxylan.
    Imjongjairak S; Jommuengbout P; Karpilanondh P; Katsuzaki H; Sakka M; Kimura T; Pason P; Tachaapaikoon C; Romsaiyud J; Ratanakhanokchai K; Sakka K
    Enzyme Microb Technol; 2015 May; 72():1-9. PubMed ID: 25837501
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification and characterization of a core fucosidase from the bacterium
    Li T; Li M; Hou L; Guo Y; Wang L; Sun G; Chen L
    J Biol Chem; 2018 Jan; 293(4):1243-1258. PubMed ID: 29196602
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identity and role of the non-conserved acid/base catalytic residue in the GH29 fucosidase from the spider Nephilingis cruentata.
    Perrella NN; Withers SG; Lopes AR
    Glycobiology; 2018 Dec; 28(12):925-932. PubMed ID: 30204861
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unraveling the substrate recognition mechanism and specificity of the unusual glycosyl hydrolase family 29 BT2192 from Bacteroides thetaiotaomicron.
    Guillotin L; Lafite P; Daniellou R
    Biochemistry; 2014 Mar; 53(9):1447-55. PubMed ID: 24527659
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.