BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 30544522)

  • 21. Expression profiling of Chondrus crispus (Rhodophyta) after exposure to methyl jasmonate.
    Collén J; Hervé C; Guisle-Marsollier I; Léger JJ; Boyen C
    J Exp Bot; 2006; 57(14):3869-81. PubMed ID: 17043086
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A unique life cycle transition in the red seaweed
    Mikami K; Li C; Irie R; Hama Y
    Commun Biol; 2019; 2():299. PubMed ID: 31396579
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transcriptome-wide analysis of basic helix-loop-helix transcription factors in Isatis indigotica and their methyl jasmonate responsive expression profiling.
    Zhang L; Chen J; Li Q; Chen W
    Gene; 2016 Jan; 576(1 Pt 1):150-9. PubMed ID: 26449398
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Transcriptomics comparison reveals the diversity of ethylene and methyl-jasmonate in roles of TIA metabolism in Catharanthus roseus.
    Pan YJ; Lin YC; Yu BF; Zu YG; Yu F; Tang ZH
    BMC Genomics; 2018 Jul; 19(1):508. PubMed ID: 29966514
    [TBL] [Abstract][Full Text] [Related]  

  • 25. De novo transcriptome assembly for four species of crustose coralline algae and analysis of unique orthologous genes.
    Page TM; McDougall C; Diaz-Pulido G
    Sci Rep; 2019 Aug; 9(1):12611. PubMed ID: 31471551
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Expression profiles of genes involved in jasmonic acid biosynthesis and signaling during growth and development of carrot.
    Wang G; Huang W; Li M; Xu Z; Wang F; Xiong A
    Acta Biochim Biophys Sin (Shanghai); 2016 Sep; 48(9):795-803. PubMed ID: 27325823
    [TBL] [Abstract][Full Text] [Related]  

  • 27. De novo transcriptome analysis of Medicago falcata reveals novel insights about the mechanisms underlying abiotic stress-responsive pathway.
    Miao Z; Xu W; Li D; Hu X; Liu J; Zhang R; Tong Z; Dong J; Su Z; Zhang L; Sun M; Li W; Du Z; Hu S; Wang T
    BMC Genomics; 2015 Oct; 16():818. PubMed ID: 26481731
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Transcriptome-Based Identification of the Desiccation Response Genes in Marine Red Algae Pyropia tenera (Rhodophyta) and Enhancement of Abiotic Stress Tolerance by PtDRG2 in Chlamydomonas.
    Im S; Lee HN; Jung HS; Yang S; Park EJ; Hwang MS; Jeong WJ; Choi DW
    Mar Biotechnol (NY); 2017 Jun; 19(3):232-245. PubMed ID: 28421378
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Simulated herbivory in chickpea causes rapid changes in defense pathways and hormonal transcription networks of JA/ethylene/GA/auxin within minutes of wounding.
    Pandey SP; Srivastava S; Goel R; Lakhwani D; Singh P; Asif MH; Sane AP
    Sci Rep; 2017 Mar; 7():44729. PubMed ID: 28300183
    [TBL] [Abstract][Full Text] [Related]  

  • 30. RNA-seq based transcriptomic analysis uncovers α-linolenic acid and jasmonic acid biosynthesis pathways respond to cold acclimation in Camellia japonica.
    Li Q; Lei S; Du K; Li L; Pang X; Wang Z; Wei M; Fu S; Hu L; Xu L
    Sci Rep; 2016 Nov; 6():36463. PubMed ID: 27819341
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evolution of jasmonate biosynthesis and signaling mechanisms.
    Han GZ
    J Exp Bot; 2017 Mar; 68(6):1323-1331. PubMed ID: 28007954
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Jasmonate-induced transcriptional changes suggest a negative interference with the ripening syndrome in peach fruit.
    Ziosi V; Bonghi C; Bregoli AM; Trainotti L; Biondi S; Sutthiwal S; Kondo S; Costa G; Torrigiani P
    J Exp Bot; 2008; 59(3):563-73. PubMed ID: 18252703
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Jasmonate biosynthesis--the latest discoveries].
    Wilmowicz E; Frankowski K; Sidłowska M; Kućko A; Kesy J; Gasiorowski A; Glazińska P; Kopcewicz J
    Postepy Biochem; 2012; 58(1):26-33. PubMed ID: 23214126
    [TBL] [Abstract][Full Text] [Related]  

  • 34. CathaCyc, a metabolic pathway database built from Catharanthus roseus RNA-Seq data.
    Van Moerkercke A; Fabris M; Pollier J; Baart GJ; Rombauts S; Hasnain G; Rischer H; Memelink J; Oksman-Caldentey KM; Goossens A
    Plant Cell Physiol; 2013 May; 54(5):673-85. PubMed ID: 23493402
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Interactions between jasmonates and ethylene in the regulation of root hair development in Arabidopsis.
    Zhu C; Gan L; Shen Z; Xia K
    J Exp Bot; 2006; 57(6):1299-308. PubMed ID: 16531464
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Diverse roles of jasmonates and ethylene in abiotic stress tolerance.
    Kazan K
    Trends Plant Sci; 2015 Apr; 20(4):219-29. PubMed ID: 25731753
    [TBL] [Abstract][Full Text] [Related]  

  • 37. De novo transcriptome analysis of rose-scented geranium provides insights into the metabolic specificity of terpene and tartaric acid biosynthesis.
    Narnoliya LK; Kaushal G; Singh SP; Sangwan RS
    BMC Genomics; 2017 Jan; 18(1):74. PubMed ID: 28086783
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Transcriptome Analysis of JA Signal Transduction, Transcription Factors, and Monoterpene Biosynthesis Pathway in Response to Methyl Jasmonate Elicitation in
    Qi X; Fang H; Yu X; Xu D; Li L; Liang C; Lu H; Li W; Chen Y; Chen Z
    Int J Mol Sci; 2018 Aug; 19(8):. PubMed ID: 30103476
    [No Abstract]   [Full Text] [Related]  

  • 39. Friends or foes: new insights in jasmonate and ethylene co-actions.
    Zhu Z; Lee B
    Plant Cell Physiol; 2015 Mar; 56(3):414-20. PubMed ID: 25435545
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Verification of hotspots of genetic diversity in Korean population of Grateloupia asiatica and G. jejuensis (Rhodophyta) show low genetic diversity and similar geographic distribution.
    Yang MY; Kim SY; Kim MS
    Genes Genomics; 2021 Dec; 43(12):1463-1469. PubMed ID: 34697760
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.