These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 30544558)

  • 1. Research on the Temperature Characteristics of the Photoacoustic Sensor of Glucose Solution.
    Tao W; Lu Z; He Q; Lv P; Wang Q; Zhao H
    Sensors (Basel); 2018 Dec; 18(12):. PubMed ID: 30544558
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Real-time monitoring of high-intensity focused ultrasound ablations with photoacoustic technique: an in vitro study.
    Cui H; Yang X
    Med Phys; 2011 Oct; 38(10):5345-50. PubMed ID: 21992353
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photoacoustic technique for simultaneous measurements of thermal effusivity and absorptivity of pigments in liquid solution.
    Balderas-López JA; Díaz-Reyes J; Zelaya-Angel O
    Rev Sci Instrum; 2011 Dec; 82(12):124901. PubMed ID: 22225240
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photoacoustic detection and optical spectroscopy of high-intensity focused ultrasound-induced thermal lesions in biologic tissue.
    Alhamami M; Kolios MC; Tavakkoli J
    Med Phys; 2014 May; 41(5):053502. PubMed ID: 24784408
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The application of frequency-domain photoacoustics to temperature-dependent measurements of the Grüneisen parameter in lipids.
    Liang S; Lashkari B; Choi SSS; Ntziachristos V; Mandelis A
    Photoacoustics; 2018 Sep; 11():56-64. PubMed ID: 30112278
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photoacoustic measurement of the Grüneisen parameter using an integrating sphere.
    Villanueva Y; Hondebrink E; Petersen W; Steenbergen W
    Rev Sci Instrum; 2014 Jul; 85(7):074904. PubMed ID: 25085163
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonlinear photoacoustic spectroscopy of hemoglobin.
    Danielli A; Maslov K; Favazza CP; Xia J; Wang LV
    Appl Phys Lett; 2015 May; 106(20):203701. PubMed ID: 26045627
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detection of aqueous glucose based on a cavity size- and optical-wavelength-independent continuous-wave photoacoustic technique.
    Camou S; Haga T; Tajima T; Tamechika E
    Anal Chem; 2012 Jun; 84(11):4718-24. PubMed ID: 22548281
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermal Memory Based Photoacoustic Imaging of Temperature.
    Zhou Y; Li M; Liu W; Sankin G; Luo J; Zhong P; Yao J
    Optica; 2019 Feb; 6(2):198-205. PubMed ID: 31286029
    [TBL] [Abstract][Full Text] [Related]  

  • 10. "Guide Star" Assisted Noninvasive Photoacoustic Measurement of Glucose.
    Zhang R; Gao F; Feng X; Jin H; Zhang S; Liu S; Luo Y; Xing B; Zheng Y
    ACS Sens; 2018 Dec; 3(12):2550-2557. PubMed ID: 30484628
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrafast measurement of photoacoustic parameters with mid-infrared frequency comb transients.
    Jang H; Lee C; Cho M; Yoon TH
    Opt Lett; 2024 Jul; 49(14):4026-4029. PubMed ID: 39008768
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interstitial photoacoustic sensor for the measurement of tissue temperature during interstitial laser phototherapy.
    Li Z; Chen H; Zhou F; Li H; Chen WR
    Sensors (Basel); 2015 Mar; 15(3):5583-93. PubMed ID: 25756865
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photoacoustic resonance by spatial filtering of focused ultrasound transducers.
    Kang D; Lashkari B; Mandelis A
    Opt Lett; 2017 Feb; 42(4):655-658. PubMed ID: 28198891
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temperature-Corrected Fluidic Glucose Sensor Based on Microwave Resonator.
    Jang C; Park JK; Lee HJ; Yun GH; Yook JG
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30423976
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glucose solution determination based on liquid photoacoustic resonance.
    Zhao S; Tao W; He Q; Zhao H; Yang H
    Appl Opt; 2017 Jan; 56(2):193-199. PubMed ID: 28085850
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of nanoscale temperature rises on photoacoustic generation: Discrimination between optical absorbers based on thermal nonlinearity at high frequency.
    Simandoux O; Prost A; Gateau J; Bossy E
    Photoacoustics; 2015 Mar; 3(1):20-5. PubMed ID: 25893167
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glucose diagnosis system combining machine learning and NIR photoacoustic multispectral using a low power CW laser.
    Yang L; Zhang Z; Wei X; Yang Y
    Biomed Opt Express; 2023 Apr; 14(4):1685-1702. PubMed ID: 37078043
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Behavior of long-period measurements using a small-sized photoacoustic cell for aqueous glucose monitoring.
    Wadamori N
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():1267-70. PubMed ID: 26736498
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phase Difference Optimization of Dual-Wavelength Excitation for the CW-Photoacoustic-Based Noninvasive and Selective Investigation of Aqueous Solutions of Glucose.
    Camou S
    Sensors (Basel); 2015 Jul; 15(7):16358-71. PubMed ID: 26198230
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dual-wavelength photoacoustic technique for monitoring tissue status during thermal treatments.
    Hsiao YS; Wang X; Deng CX
    J Biomed Opt; 2013 Jun; 18(6):067003. PubMed ID: 23733048
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.