BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 30544587)

  • 1. Carbide Precipitation during Tempering and Its Effect on the Wear Loss of a High-Carbon 8 Mass% Cr Tool Steel.
    Li S; Xi X; Luo Y; Mao M; Shi X; Guo J; Guo H
    Materials (Basel); 2018 Dec; 11(12):. PubMed ID: 30544587
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of Carbide Precipitation during Tempering for Quenched Dievar Steel.
    Xie Y; Cheng X; Wei J; Luo R
    Materials (Basel); 2022 Sep; 15(18):. PubMed ID: 36143760
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Retained Austenite Decomposition and Carbide Precipitation during Isothermal Tempering of a Medium-Carbon Low-Alloy Bainitic Steel.
    Talebi SH; Jahazi M; Melkonyan H
    Materials (Basel); 2018 Aug; 11(8):. PubMed ID: 30111731
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of Tempering Conditions on Secondary Hardening of Carbides and Retained Austenite in Spray-Formed M42 High-Speed Steel.
    Liu B; Qin T; Xu W; Jia C; Wu Q; Chen M; Liu Z
    Materials (Basel); 2019 Nov; 12(22):. PubMed ID: 31717909
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improvement of Adhesive Wear Behavior by Variable Heat Treatment of a Tool Steel for Sheet Metal Forming.
    Gonzalez-Pociño A; Alvarez-Antolin F; Asensio-Lozano J
    Materials (Basel); 2019 Sep; 12(17):. PubMed ID: 31484361
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of Silicon, Chromium, and Copper on Kinetic Parameters of Precipitation during Tempering of Medium Carbon Steels.
    Gokhman A; Nový Z; Salvetr P; Ryukhtin V; Strunz P; Motyčka P; Zmeko J; Kotous J
    Materials (Basel); 2021 Mar; 14(6):. PubMed ID: 33809623
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of 1.5 wt% Copper Addition and Various Contents of Silicon on Mechanical Properties of 1.7102 Medium Carbon Steel.
    Salvetr P; Gokhman A; Nový Z; Motyčka P; Kotous J
    Materials (Basel); 2021 Sep; 14(18):. PubMed ID: 34576468
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Precipitate design for creep strengthening of 9% Cr tempered martensitic steel for ultra-supercritical power plants.
    Abe F
    Sci Technol Adv Mater; 2008 Jan; 9(1):013002. PubMed ID: 27877920
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimisation of Thermal Processes with Plasma Nitriding on Vanadis 4 High Speed Steel.
    Alvarez-Antolin F; Gonzalez-Pociño A; Cofiño-Villar A; Alvarez-Perez CH
    Materials (Basel); 2022 Jan; 15(3):. PubMed ID: 35160856
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes in Microstructure and Abrasion Resistance during Miller Test of Hadfield High-Manganese Cast Steel after the Formation of Vanadium Carbides in Alloy Matrix.
    Tęcza G
    Materials (Basel); 2022 Jan; 15(3):. PubMed ID: 35160966
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dilatometric and Microstructural Study of Martensite Tempering in 4% Mn Steel.
    Grajcar A; Morawiec M; Jimenez JA; Garcia-Mateo C
    Materials (Basel); 2020 Oct; 13(19):. PubMed ID: 33036358
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of carbide precipitate morphology on fracture toughness in low-tempered steels containing Ni.
    Krawczyk J; Bała P; Pacyna J
    J Microsc; 2010 Mar; 237(3):411-5. PubMed ID: 20500408
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative study on the effects of Cr, V, and Mo carbides for hydrogen-embrittlement resistance of tempered martensitic steel.
    Lee J; Lee T; Mun DJ; Bae CM; Lee CS
    Sci Rep; 2019 Mar; 9(1):5219. PubMed ID: 30914723
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Elimination of Carbides in Carburized Layer of Stainless Steel/Carbon Steel by Horizontal Continuous Liquid-Solid Composite Casting.
    Sun J; Liu X; Yang Y; Wang W; Wang X; Zhang W
    Materials (Basel); 2023 May; 16(9):. PubMed ID: 37176398
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of Temperature on Microstructure and Mechanical Properties of Fe-9Ni-2Cu Steel during the Tempering Process.
    Huang X; Wang L; Wang Z; Wang Z; Liu Q
    Materials (Basel); 2021 Nov; 14(23):. PubMed ID: 34885296
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electron microscopy study of carbides precipitated during destabilization and tempering heat treatments of 25 wt.%Cr-0.7 wt.%Mo high chromium cast irons.
    Wiengmoon A; Pearce JTH; Nusen S; Chairuangsri T
    Micron; 2021 Apr; 143():103025. PubMed ID: 33549852
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiple Interface Structures of M
    Ding Z; Liang B; Xu Z; Dong L
    ACS Appl Mater Interfaces; 2020 Apr; 12(16):19235-19242. PubMed ID: 32223209
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-dimensional atom probe characterization of alloy element partitioning in cementite during tempering of alloy steel.
    Zhu C; Xiong XY; Cerezo A; Hardwicke R; Krauss G; Smith GD
    Ultramicroscopy; 2007 Sep; 107(9):808-12. PubMed ID: 17449183
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of Tempering Temperature on Hydrogen Embrittlement of SCM440 Tempered Martensitic Steel.
    Kim SG; Kim JY; Hwang B
    Materials (Basel); 2023 Aug; 16(16):. PubMed ID: 37630000
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microstructure Evolution and Mechanical Properties of X6CrNiMoVNb11-2 Stainless Steel after Heat Treatment.
    Fu J; Xia C
    Materials (Basel); 2021 Sep; 14(18):. PubMed ID: 34576467
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.