BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

334 related articles for article (PubMed ID: 30544594)

  • 1. Experimental Phantom-Based Security Analysis for Next-Generation Leadless Cardiac Pacemakers.
    Awan MF; Perez-Simbor S; Garcia-Pardo C; Kansanen K; Cardona N
    Sensors (Basel); 2018 Dec; 18(12):. PubMed ID: 30544594
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of Secrecy Capacity for Next-Generation Leadless Cardiac Pacemakers.
    Awan MF; Bose P; Khaleghi A; Kansanen K; Balasingham I
    IEEE Trans Biomed Eng; 2020 Aug; 67(8):2297-2308. PubMed ID: 31831404
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Defending Against Randomly Located Eavesdroppers by Establishing a Protecting Region.
    Li T; Xue C; Li Y; Dobre OA
    Sensors (Basel); 2020 Jan; 20(2):. PubMed ID: 31941050
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RF Channel Modeling for Implant-to-Implant Communication and Implant to Subcutaneous Implant Communication for Future Leadless Cardiac Pacemakers.
    Bose P; Khaleghi A; Albatat M; Bergsland J; Balasingham I
    IEEE Trans Biomed Eng; 2018 Dec; 65(12):2798-2807. PubMed ID: 29993450
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Secrecy Performance Analysis of Cooperative Multihop Transmission for WSNs under Eavesdropping Attacks.
    Triwidyastuti Y; Perdana RHY; Shim K; An B
    Sensors (Basel); 2023 Sep; 23(17):. PubMed ID: 37688109
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wireless Channel Modeling for Leadless Cardiac Pacemaker: Effects ofVentricular Blood Volume.
    Bose P; Khaleghi A; Balasingham I
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():3746-3749. PubMed ID: 30441181
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Secure Multiuser Communications in Wireless Sensor Networks with TAS and Cooperative Jamming.
    Yang M; Zhang B; Huang Y; Yang N; Guo D; Gao B
    Sensors (Basel); 2016 Nov; 16(11):. PubMed ID: 27845753
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Free-space optical channel estimation for physical layer security.
    Endo H; Fujiwara M; Kitamura M; Ito T; Toyoshima M; Takayama Y; Takenaka H; Shimizu R; Laurenti N; Vallone G; Villoresi P; Aoki T; Sasaki M
    Opt Express; 2016 Apr; 24(8):8940-55. PubMed ID: 27137325
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [New Innovative Pacemaker Devices - Leadless Pacemaker, Subcutaneous ICD].
    Napp A; Reith S
    Dtsch Med Wochenschr; 2018 Nov; 143(22):1617-1622. PubMed ID: 30376685
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental Path Loss Models for In-Body Communications Within 2.36-2.5 GHz.
    Chávez-Santiago R; Garcia-Pardo C; Fornes-Leal A; Vallés-Lluch A; Vermeeren G; Joseph W; Balasingham I; Cardona N
    IEEE J Biomed Health Inform; 2015 May; 19(3):930-7. PubMed ID: 25838532
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Secrecy Capacity of a Class of Erasure Wiretap Channels in WBAN.
    Wang B; Deng J; Sun Y; Guo W; Feng G
    Sensors (Basel); 2018 Nov; 18(12):. PubMed ID: 30486250
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Secrecy Performance Analysis of Cognitive Sensor Radio Networks with an EH-Based Eavesdropper.
    Sun A; Liang T; Li B
    Sensors (Basel); 2017 May; 17(5):. PubMed ID: 28471374
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the secrecy performance of transmit-receive diversity and spatial multiplexing systems.
    Maichalernnukul K
    PeerJ Comput Sci; 2019; 5():e186. PubMed ID: 33816839
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physical-layer security analysis of a quantum-noise randomized cipher based on the wire-tap channel model.
    Jiao H; Pu T; Zheng J; Xiang P; Fang T
    Opt Express; 2017 May; 25(10):10947-10960. PubMed ID: 28788782
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploiting Opportunistic Scheduling Schemes and WPT-Based Multi-Hop Transmissions to Improve Physical Layer Security in Wireless Sensor Networks.
    Shim K; Nguyen TV; An B
    Sensors (Basel); 2019 Dec; 19(24):. PubMed ID: 31835732
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Leadless Cardiac Pacemakers: The Next Evolution in Pacemaker Technology.
    McCauley BD; Chu AF
    R I Med J (2013); 2017 Nov; 100(11):31-34. PubMed ID: 29088572
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physical Layer Security in Two-Way SWIPT Relay Networks with Imperfect CSI and a Friendly Jammer.
    Hayajneh M; Gulliver TA
    Entropy (Basel); 2023 Jan; 25(1):. PubMed ID: 36673263
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimizing Cardiac Wireless Implant Communication: A Feasibility Study on Selecting the Frequency and Matching Medium.
    Amin B; Rehman MRU; Farooq M; Elahi A; Donaghey K; Wijns W; Shahzad A; Vazquez P
    Sensors (Basel); 2023 Mar; 23(7):. PubMed ID: 37050471
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the Zero-Outage Secrecy-Capacity of Dependent Fading Wiretap Channels.
    Jorswieck E; Lin PH; Besser KL
    Entropy (Basel); 2022 Jan; 24(1):. PubMed ID: 35052125
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Studies of scattering, reflectivity, and transmitivity in WBAN channel: feasibility of using UWB.
    Kabir MH; Ashrafuzzaman K; Chowdhury MS; Kwak KS
    Sensors (Basel); 2010; 10(6):5503-29. PubMed ID: 22219673
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.