These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 30544728)

  • 21. Combining a Modified Particle Filter Method and Indoor Magnetic Fingerprint Map to Assist Pedestrian Dead Reckoning for Indoor Positioning and Navigation.
    Ning FS; Chen YC
    Sensors (Basel); 2019 Dec; 20(1):. PubMed ID: 31905699
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Pedestrian Positioning Using an Enhanced Ensemble Transform Kalman Filter.
    Sung K
    Sensors (Basel); 2023 Aug; 23(15):. PubMed ID: 37571653
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An Indoor Localization Method for Pedestrians Base on Combined UWB/PDR/Floor Map.
    Liu F; Wang J; Zhang J; Han H
    Sensors (Basel); 2019 Jun; 19(11):. PubMed ID: 31174314
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Pedestrian Navigation System with Trinal-IMUs for Drastic Motions.
    Ding Y; Xiong Z; Li W; Cao Z; Wang Z
    Sensors (Basel); 2020 Sep; 20(19):. PubMed ID: 33003283
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Indoor Positioning Based on Pedestrian Dead Reckoning and Magnetic Field Matching for Smartphones.
    Kuang J; Niu X; Zhang P; Chen X
    Sensors (Basel); 2018 Nov; 18(12):. PubMed ID: 30486300
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A Bluetooth/PDR Integration Algorithm for an Indoor Positioning System.
    Li X; Wang J; Liu C
    Sensors (Basel); 2015 Sep; 15(10):24862-85. PubMed ID: 26404277
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Context-Aware Smartphone-Based 3D Indoor Positioning Using Pedestrian Dead Reckoning.
    Khalili B; Ali Abbaspour R; Chehreghan A; Vesali N
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560336
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Indoor localization using pedestrian dead reckoning updated with RFID-based fiducials.
    House S; Connell S; Milligan I; Austin D; Hayes TL; Chiang P
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():7598-601. PubMed ID: 22256097
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Improving inertial Pedestrian Dead-Reckoning by detecting unmodified switched-on lamps in buildings.
    Jiménez AR; Zampella F; Seco F
    Sensors (Basel); 2014 Jan; 14(1):731-69. PubMed ID: 24394599
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Vector graph assisted pedestrian dead reckoning using an unconstrained smartphone.
    Qian J; Pei L; Ma J; Ying R; Liu P
    Sensors (Basel); 2015 Mar; 15(3):5032-57. PubMed ID: 25738763
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Robust Pedestrian Dead Reckoning Based on MEMS-IMU for Smartphones.
    Kuang J; Niu X; Chen X
    Sensors (Basel); 2018 May; 18(5):. PubMed ID: 29724003
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enhanced Heuristic Drift Elimination with Adaptive Zero-Velocity Detection and Heading Correction Algorithms for Pedestrian Navigation.
    Zhu R; Wang Y; Yu B; Gan X; Jia H; Wang B
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32053884
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Error Modelling for Multi-Sensor Measurements in Infrastructure-Free Indoor Navigation.
    Ruotsalainen L; Kirkko-Jaakkola M; Rantanen J; Mäkelä M
    Sensors (Basel); 2018 Feb; 18(2):. PubMed ID: 29443918
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Novel Drift Reduction Methods in Foot-Mounted PDR System.
    Zhang W; Wei D; Yuan H
    Sensors (Basel); 2019 Sep; 19(18):. PubMed ID: 31540322
    [TBL] [Abstract][Full Text] [Related]  

  • 35. LiDAR Scan Matching Aided Inertial Navigation System in GNSS-Denied Environments.
    Tang J; Chen Y; Niu X; Wang L; Chen L; Liu J; Shi C; Hyyppä J
    Sensors (Basel); 2015 Jul; 15(7):16710-28. PubMed ID: 26184206
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A UWB/Improved PDR Integration Algorithm Applied to Dynamic Indoor Positioning for Pedestrians.
    Chen P; Kuang Y; Chen X
    Sensors (Basel); 2017 Sep; 17(9):. PubMed ID: 28885555
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Drift Reduction in Pedestrian Navigation System by Exploiting Motion Constraints and Magnetic Field.
    Ilyas M; Cho K; Baeg SH; Park S
    Sensors (Basel); 2016 Sep; 16(9):. PubMed ID: 27618056
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Image-Based Localization Aided Indoor Pedestrian Trajectory Estimation Using Smartphones.
    Zhou Y; Zheng X; Chen R; Xiong H; Guo S
    Sensors (Basel); 2018 Jan; 18(1):. PubMed ID: 29342123
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Use of high sensitivity GNSS receiver Doppler measurements for indoor pedestrian dead reckoning.
    He Z; Renaudin V; Petovello MG; Lachapelle G
    Sensors (Basel); 2013 Mar; 13(4):4303-26. PubMed ID: 23539033
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Multi-Sensorial Simultaneous Localization and Mapping (SLAM) System for Low-Cost Micro Aerial Vehicles in GPS-Denied Environments.
    López E; García S; Barea R; Bergasa LM; Molinos EJ; Arroyo R; Romera E; Pardo S
    Sensors (Basel); 2017 Apr; 17(4):. PubMed ID: 28397758
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.