BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 30544733)

  • 1. Preparation and Properties of Titanium Obtained by Spark Plasma Sintering of a Ti Powder⁻Fiber Mixture.
    Shi M; Liu S; Wang Q; Yang X; Zhang G
    Materials (Basel); 2018 Dec; 11(12):. PubMed ID: 30544733
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication, Structural Characterization and Uniaxial Tensile Properties of Novel Sintered Multi-Layer Wire Mesh Porous Plates.
    Duan L; Zhou Z; Yao B
    Materials (Basel); 2018 Jan; 11(1):. PubMed ID: 29342129
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microstructure and Mechanical Behavior of Porous Ti-6Al-4V Processed by Spherical Powder Sintering.
    Reig L; Tojal C; Busquets DJ; Amigó V
    Materials (Basel); 2013 Oct; 6(10):4868-4878. PubMed ID: 28788365
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation and properties of porous Ti-10Mo alloy by selective laser sintering.
    Xie F; He X; Lu X; Cao S; Qu X
    Mater Sci Eng C Mater Biol Appl; 2013 Apr; 33(3):1085-90. PubMed ID: 23827546
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapidly sintering of interconnected porous Ti-HA biocomposite with high strength and enhanced bioactivity.
    Zhang L; He ZY; Zhang YQ; Jiang YH; Zhou R
    Mater Sci Eng C Mater Biol Appl; 2016 Oct; 67():104-114. PubMed ID: 27287104
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microstructure and Mechanical Properties of Ti-25Nb-4Ta-8Sn Alloy Prepared by Spark Plasma Sintering.
    Voňavková I; Průša F; Kubásek J; Michalcová A; Vojtěch D
    Materials (Basel); 2022 Mar; 15(6):. PubMed ID: 35329609
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Novel Approach by Spark Plasma Sintering to the Improvement of Mechanical Properties of Titanium Carbonitride-Reinforced Alumina Ceramics.
    Szutkowska M; Podsiadło M; Sadowski T; Figiel P; Boniecki M; Pietras D; Polczyk T
    Molecules; 2021 Mar; 26(5):. PubMed ID: 33802397
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation, microstructure and mechanical properties of porous titanium sintered by Ti fibres.
    Zou C; Zhang E; Li M; Zeng S
    J Mater Sci Mater Med; 2008 Jan; 19(1):401-5. PubMed ID: 17607525
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure and Deformation Behavior of Ti-SiC Composites Made by Mechanical Alloying and Spark Plasma Sintering.
    Garbiec D; Leshchynsky V; Colella A; Matteazzi P; Siwak P
    Materials (Basel); 2019 Apr; 12(8):. PubMed ID: 31003467
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study of Lightweight Ceramic Matrix-Less Syntactic Foam Composed of Cenosphere Using Spark Plasma Sintering.
    Eiduks TV; Drunka R; Abramovskis V; Zalite I; Gavrilovs P; Baronins J; Lapkovskis V
    Materials (Basel); 2024 Jan; 17(2):. PubMed ID: 38255618
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formability and mechanical properties of porous titanium produced by a moldless process.
    Naito Y; Bae J; Tomotake Y; Hamada K; Asaoka K; Ichikawa T
    J Biomed Mater Res B Appl Biomater; 2013 Aug; 101(6):1090-4. PubMed ID: 23559484
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microstructure and Mechanical Properties of Nanocrystalline Al-Zn-Mg-Cu Alloy Prepared by Mechanical Alloying and Spark Plasma Sintering.
    Cheng J; Cai Q; Zhao B; Yang S; Chen F; Li B
    Materials (Basel); 2019 Apr; 12(8):. PubMed ID: 30995788
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Application of sintered Ti powder to dental prostheses].
    Hikosaka T; Tanaka Y; Hoshiai K; Kanazawa T; Nakamura Y; Tsuda K; Ohasi H
    Nihon Hotetsu Shika Gakkai Zasshi; 2005 Apr; 49(2):242-52. PubMed ID: 15858319
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spark plasma sintering synthesis of porous nanocrystalline titanium alloys for biomedical applications.
    Nicula R; Lüthen F; Stir M; Nebe B; Burkel E
    Biomol Eng; 2007 Nov; 24(5):564-7. PubMed ID: 17869173
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microstructure and Mechanical Properties of Nano-Carbon Reinforced Titanium Matrix/Hydroxyapatite Biocomposites Prepared by Spark Plasma Sintering.
    Li F; Jiang X; Shao Z; Zhu D; Luo Z
    Nanomaterials (Basel); 2018 Sep; 8(9):. PubMed ID: 30223566
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microstructure evolution, mechanical properties, and enhanced bioactivity of Ti-13Nb-13Zr based calcium pyrophosphate composites for biomedical applications.
    Hu H; Zhang L; He Z; Jiang Y; Tan J
    Mater Sci Eng C Mater Biol Appl; 2019 May; 98():279-287. PubMed ID: 30813028
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alloy Design and Fabrication of Duplex Titanium-Based Alloys by Spark Plasma Sintering for Biomedical Implant Applications.
    Ijaz MF; Alharbi HF; Bahri YA; Sherif EM
    Materials (Basel); 2022 Dec; 15(23):. PubMed ID: 36500058
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication of porous titanium implants by three-dimensional printing and sintering at different temperatures.
    Xiong Y; Qian C; Sun J
    Dent Mater J; 2012; 31(5):815-20. PubMed ID: 23037845
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemical surface modification of high-strength porous Ti compacts by spark plasma sintering.
    Sakamoto Y; Asaoka K; Kon M; Matsubara T; Yoshida K
    Biomed Mater Eng; 2006; 16(2):83-91. PubMed ID: 16477117
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spark Plasma Sintering Behavior of Nb-Mo-Si Alloy Powders Fabricated by Hydrogenation-Dehydrogenation Method.
    Lee SY; Park KB; Kang JW; Kim Y; Kang HS; Ha TK; Min SH; Park HK
    Materials (Basel); 2019 Oct; 12(21):. PubMed ID: 31671875
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.