These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

378 related articles for article (PubMed ID: 30544791)

  • 1. Background Light Rejection in SPAD-Based LiDAR Sensors by Adaptive Photon Coincidence Detection.
    Beer M; Haase JF; Ruskowski J; Kokozinski R
    Sensors (Basel); 2018 Dec; 18(12):. PubMed ID: 30544791
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-Photon Avalanche Diode with Enhanced NIR-Sensitivity for Automotive LIDAR Systems.
    Takai I; Matsubara H; Soga M; Ohta M; Ogawa M; Yamashita T
    Sensors (Basel); 2016 Mar; 16(4):459. PubMed ID: 27043569
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A CMOS SPAD Imager with Collision Detection and 128 Dynamically Reallocating TDCs for Single-Photon Counting and 3D Time-of-Flight Imaging.
    Zhang C; Lindner S; Antolovic IM; Wolf M; Charbon E
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30453648
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SPADs and SiPMs Arrays for Long-Range High-Speed Light Detection and Ranging (LiDAR).
    Villa F; Severini F; Madonini F; Zappa F
    Sensors (Basel); 2021 Jun; 21(11):. PubMed ID: 34206130
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical Model of SPAD-Based Direct Time-of-Flight Flash LIDAR CMOS Image Sensors.
    Tontini A; Gasparini L; Perenzoni M
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32932624
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Small Imaging Depth LIDAR and DCNN-Based Localization for Automated Guided Vehicle.
    Ito S; Hiratsuka S; Ohta M; Matsubara H; Ogawa M
    Sensors (Basel); 2018 Jan; 18(1):. PubMed ID: 29320434
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling and Analysis of a Direct Time-of-Flight Sensor Architecture for LiDAR Applications.
    Padmanabhan P; Zhang C; Charbon E
    Sensors (Basel); 2019 Dec; 19(24):. PubMed ID: 31835807
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling, Simulation Methods and Characterization of Photon Detection Probability in CMOS-SPAD.
    Panglosse A; Martin-Gonthier P; Marcelot O; Virmontois C; Saint-Pé O; Magnan P
    Sensors (Basel); 2021 Aug; 21(17):. PubMed ID: 34502751
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D LIDAR imaging using Ge-on-Si single-photon avalanche diode detectors.
    Kuzmenko K; Vines P; Halimi A; Collins RJ; Maccarone A; McCarthy A; Greener ZM; Kirdoda J; Dumas DCS; Llin LF; Mirza MM; Millar RW; Paul DJ; Buller GS
    Opt Express; 2020 Jan; 28(2):1330-1344. PubMed ID: 32121846
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Statistical Modelling of SPADs for Time-of-Flight LiDAR.
    Incoronato A; Locatelli M; Zappa F
    Sensors (Basel); 2021 Jun; 21(13):. PubMed ID: 34209114
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanosecond pulsed CMOS LED for all-silicon time-of-flight ranging.
    Li Z; Ram RJ
    Opt Express; 2023 Jul; 31(15):24307-24319. PubMed ID: 37475261
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct integration of micro-LEDs and a SPAD detector on a silicon CMOS chip for data communications and time-of-flight ranging.
    Carreira JFC; Griffiths AD; Xie E; Guilhabert BJE; Herrnsdorf J; Henderson RK; Gu E; Strain MJ; Dawson MD
    Opt Express; 2020 Mar; 28(5):6909-6917. PubMed ID: 32225928
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Custom-Technology Single-Photon Avalanche Diode Linear Detector Array for Underwater Depth Imaging.
    Maccarone A; Acconcia G; Steinlehner U; Labanca I; Newborough D; Rech I; Buller GS
    Sensors (Basel); 2021 Jul; 21(14):. PubMed ID: 34300590
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A dToF Ranging Sensor with Accurate Photon Detector Measurements for LiDAR Applications.
    Yu H; Wang L; Xu J; Chiang PY
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991721
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spot Tracking and TDC Sharing in SPAD Arrays for TOF LiDAR.
    Sesta V; Severini F; Villa F; Lussana R; Zappa F; Nakamuro K; Matsui Y
    Sensors (Basel); 2021 Apr; 21(9):. PubMed ID: 33922102
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analytical Evaluation of Signal-to-Noise Ratios for Avalanche- and Single-Photon Avalanche Diodes.
    Buchner A; Hadrath S; Burkard R; Kolb FM; Ruskowski J; Ligges M; Grabmaier A
    Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33924194
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High Dynamic Range Imaging at the Quantum Limit with Single Photon Avalanche Diode-Based Image Sensors.
    Dutton NAW; Al Abbas T; Gyongy I; Mattioli Della Rocca F; Henderson RK
    Sensors (Basel); 2018 Apr; 18(4):. PubMed ID: 29641479
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A 250 m Direct Time-of-Flight Ranging System Based on a Synthesis of Sub-Ranging Images and a Vertical Avalanche Photo-Diodes (VAPD) CMOS Image Sensor.
    Hirose Y; Koyama S; Ishii M; Saitou S; Takemoto M; Nose Y; Inoue A; Sakata Y; Sugiura Y; Kabe T; Usuda M; Kasuga S; Mori M; Odagawa A; Tanaka T
    Sensors (Basel); 2018 Oct; 18(11):. PubMed ID: 30373223
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Indirect Time-of-Flight with GHz Correlation Frequency and Integrated SPAD Reaching Sub-100 µm Precision in 0.35 µm CMOS.
    Hauser M; Zimmermann H; Hofbauer M
    Sensors (Basel); 2023 Mar; 23(5):. PubMed ID: 36904936
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Custom single-photon avalanche diode with integrated front-end for parallel photon timing applications.
    Cammi C; Panzeri F; Gulinatti A; Rech I; Ghioni M
    Rev Sci Instrum; 2012 Mar; 83(3):033104. PubMed ID: 22462903
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.