These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 30544866)

  • 1. A Novel Method of Frequency Band Selection for Squared Envelope Analysis for Fault Diagnosing of Rolling Element Bearings in a Locomotive Powertrain.
    Xu L; Chatterton S; Pennacchi P
    Sensors (Basel); 2018 Dec; 18(12):. PubMed ID: 30544866
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Early Fault Diagnosis of Bearings Using an Improved Spectral Kurtosis by Maximum Correlated Kurtosis Deconvolution.
    Jia F; Lei Y; Shan H; Lin J
    Sensors (Basel); 2015 Nov; 15(11):29363-77. PubMed ID: 26610501
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimal Resonant Band Demodulation Based on an Improved Correlated Kurtosis and Its Application in Bearing Fault Diagnosis.
    Chen X; Zhang B; Feng F; Jiang P
    Sensors (Basel); 2017 Feb; 17(2):. PubMed ID: 28208820
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiband Envelope Spectra Extraction for Fault Diagnosis of Rolling Element Bearings.
    Duan J; Shi T; Zhou H; Xuan J; Zhang Y
    Sensors (Basel); 2018 May; 18(5):. PubMed ID: 29738474
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of EEMD and improved frequency band entropy in bearing fault feature extraction.
    Li H; Liu T; Wu X; Chen Q
    ISA Trans; 2019 May; 88():170-185. PubMed ID: 30558907
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multi-objective Informative Frequency Band Selection Based on Negentropy-induced Grey Wolf Optimizer for Fault Diagnosis of Rolling Element Bearings.
    Gu X; Yang S; Liu Y; Hao R; Liu Z
    Sensors (Basel); 2020 Mar; 20(7):. PubMed ID: 32225091
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptive filtering enhanced windowed correlated kurtosis for multiple faults diagnosis of locomotive bearings.
    Zhang C; Liu Y; Wan F; Chen B; Liu J; Hu B
    ISA Trans; 2020 Jun; 101():421-429. PubMed ID: 32007258
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The use of SESK as a trend parameter for localized bearing fault diagnosis in induction machines.
    Saidi L; Ben Ali J; Benbouzid M; Bechhoefer E
    ISA Trans; 2016 Jul; 63():436-447. PubMed ID: 27000630
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Shock Pulse Index and Its Application in the Fault Diagnosis of Rolling Element Bearings.
    Sun P; Liao Y; Lin J
    Sensors (Basel); 2017 Mar; 17(3):. PubMed ID: 28282883
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Minimum entropy deconvolution based on simulation-determined band pass filter to detect faults in axial piston pump bearings.
    Wang S; Xiang J; Tang H; Liu X; Zhong Y
    ISA Trans; 2019 May; 88():186-198. PubMed ID: 30563690
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fault diagnosis of rolling element bearing using a new optimal scale morphology analysis method.
    Yan X; Jia M; Zhang W; Zhu L
    ISA Trans; 2018 Feb; 73():165-180. PubMed ID: 29331434
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-fault detection of rolling element bearings under harsh working condition using IMF-based adaptive envelope order analysis.
    Zhao M; Lin J; Xu X; Li X
    Sensors (Basel); 2014 Oct; 14(11):20320-46. PubMed ID: 25353982
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An enhanced rolling bearing fault detection method combining sparse code shrinkage denoising with fast spectral correlation.
    Li J; Yu Q; Wang X; Zhang Y
    ISA Trans; 2020 Jul; 102():335-346. PubMed ID: 32122637
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tacholess envelope order analysis and its application to fault detection of rolling element bearings with varying speeds.
    Zhao M; Lin J; Xu X; Lei Y
    Sensors (Basel); 2013 Aug; 13(8):10856-75. PubMed ID: 23959244
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rolling element bearing fault identification using a novel three-step adaptive and automated filtration scheme based on Gini index.
    Albezzawy MN; Nassef MG; Sawalhi N
    ISA Trans; 2020 Jun; 101():453-460. PubMed ID: 31955946
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new method to select frequency band for vibration signal demodulation and condition estimation of rolling bearings.
    Yu Y; Qian M; Chen T; Guo L; Gao H; Zhang G
    ISA Trans; 2023 Feb; 133():575-596. PubMed ID: 35934553
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Novel Hybrid Technique Combining Improved Cepstrum Pre-Whitening and High-Pass Filtering for Effective Bearing Fault Diagnosis Using Vibration Data.
    Kiakojouri A; Lu Z; Mirring P; Powrie H; Wang L
    Sensors (Basel); 2023 Nov; 23(22):. PubMed ID: 38005435
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimal Sub-Band Analysis Based on the Envelope Power Spectrum for Effective Fault Detection in Bearing under Variable, Low Speeds.
    Nguyen HN; Kim J; Kim JM
    Sensors (Basel); 2018 May; 18(5):. PubMed ID: 29723996
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Novel Fault Detection Method for Rolling Bearings Based on Non-Stationary Vibration Signature Analysis.
    Zhen D; Guo J; Xu Y; Zhang H; Gu F
    Sensors (Basel); 2019 Sep; 19(18):. PubMed ID: 31527448
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An improved complementary ensemble empirical mode decomposition with adaptive noise and its application to rolling element bearing fault diagnosis.
    Cheng Y; Wang Z; Chen B; Zhang W; Huang G
    ISA Trans; 2019 Aug; 91():218-234. PubMed ID: 30738582
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.