These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

298 related articles for article (PubMed ID: 30544868)

  • 1. The Microfluidic Technique and the Manufacturing of Polysaccharide Nanoparticles.
    Chiesa E; Dorati R; Pisani S; Conti B; Bergamini G; Modena T; Genta I
    Pharmaceutics; 2018 Dec; 10(4):. PubMed ID: 30544868
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The importance of microfluidics for the preparation of nanoparticles as advanced drug delivery systems.
    Martins JP; Torrieri G; Santos HA
    Expert Opin Drug Deliv; 2018 May; 15(5):469-479. PubMed ID: 29508630
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Current developments and applications of microfluidic technology toward clinical translation of nanomedicines.
    Liu D; Zhang H; Fontana F; Hirvonen JT; Santos HA
    Adv Drug Deliv Rev; 2018 Mar; 128():54-83. PubMed ID: 28801093
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Production of nanoparticle drug delivery systems with microfluidics tools.
    Khan IU; Serra CA; Anton N; Vandamme TF
    Expert Opin Drug Deliv; 2015 Apr; 12(4):547-62. PubMed ID: 25345543
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidic Devices: A Tool for Nanoparticle Synthesis and Performance Evaluation.
    Gimondi S; Ferreira H; Reis RL; Neves NM
    ACS Nano; 2023 Aug; 17(15):14205-14228. PubMed ID: 37498731
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent Advances of Microfluidic Platforms for Controlled Drug Delivery in Nanomedicine.
    Ejeta F
    Drug Des Devel Ther; 2021; 15():3881-3891. PubMed ID: 34531650
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfluidics for the Production of Nanomedicines: Considerations for Polymer and Lipid-based Systems.
    Streck S; Hong L; Boyd BJ; McDowell A
    Pharm Nanotechnol; 2019; 7(6):423-443. PubMed ID: 31629401
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polymer-lipid hybrid nanoparticles as enhanced indomethacin delivery systems.
    Dalmoro A; Bochicchio S; Nasibullin SF; Bertoncin P; Lamberti G; Barba AA; Moustafine RI
    Eur J Pharm Sci; 2018 Aug; 121():16-28. PubMed ID: 29777855
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Advances in microfluidic synthesis and coupling with synchrotron SAXS for continuous production and real-time structural characterization of nano-self-assemblies.
    Ilhan-Ayisigi E; Yaldiz B; Bor G; Yaghmur A; Yesil-Celiktas O
    Colloids Surf B Biointerfaces; 2021 May; 201():111633. PubMed ID: 33639513
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microfluidic technologies for accelerating the clinical translation of nanoparticles.
    Valencia PM; Farokhzad OC; Karnik R; Langer R
    Nat Nanotechnol; 2012 Oct; 7(10):623-9. PubMed ID: 23042546
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-step microfluidic synthesis of transferrin-conjugated lipid nanoparticles for siRNA delivery.
    Li Y; Lee RJ; Huang X; Li Y; Lv B; Wang T; Qi Y; Hao F; Lu J; Meng Q; Teng L; Zhou Y; Xie J; Teng L
    Nanomedicine; 2017 Feb; 13(2):371-381. PubMed ID: 27720989
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfluidic-aided fabrication of nanoparticles blend based on chitosan for a transdermal multidrug delivery application.
    Shamsi M; Zahedi P; Ghourchian H; Minaeian S
    Int J Biol Macromol; 2017 Jun; 99():433-442. PubMed ID: 28274863
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of diffusion and mixing pattern on microfluidic-assisted synthesis of chitosan/ATP nanoparticles.
    Pessoa ACSN; Sipoli CC; de la Torre LG
    Lab Chip; 2017 Jun; 17(13):2281-2293. PubMed ID: 28608886
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microfluidic and lab-on-a-chip preparation routes for organic nanoparticles and vesicular systems for nanomedicine applications.
    Capretto L; Carugo D; Mazzitelli S; Nastruzzi C; Zhang X
    Adv Drug Deliv Rev; 2013 Nov; 65(11-12):1496-532. PubMed ID: 23933616
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design and Development of Biomimetic Nanovesicles Using a Microfluidic Approach.
    Molinaro R; Evangelopoulos M; Hoffman JR; Corbo C; Taraballi F; Martinez JO; Hartman KA; Cosco D; Costa G; Romeo I; Sherman M; Paolino D; Alcaro S; Tasciotti E
    Adv Mater; 2018 Apr; 30(15):e1702749. PubMed ID: 29512198
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanoparticles and Microfluidic Devices in Cancer Research.
    Maia FR; Reis RL; Oliveira JM
    Adv Exp Med Biol; 2020; 1230():161-171. PubMed ID: 32285370
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfluidics: a transformational tool for nanomedicine development and production.
    Garg S; Heuck G; Ip S; Ramsay E
    J Drug Target; 2016 Nov; 24(9):821-835. PubMed ID: 27492254
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polysaccharide-based Nanoparticles for Gene Delivery.
    Huh MS; Lee EJ; Koo H; Yhee JY; Oh KS; Son S; Lee S; Kim SH; Kwon IC; Kim K
    Top Curr Chem (Cham); 2017 Apr; 375(2):31. PubMed ID: 28251564
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimization and scale up of microfluidic nanolipomer production method for preclinical and potential clinical trials.
    Gdowski A; Johnson K; Shah S; Gryczynski I; Vishwanatha J; Ranjan A
    J Nanobiotechnology; 2018 Feb; 16(1):12. PubMed ID: 29433518
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluating Nanoparticles in Preclinical Research Using Microfluidic Systems.
    Zhu D; Long Q; Xu Y; Xing J
    Micromachines (Basel); 2019 Jun; 10(6):. PubMed ID: 31234335
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.