These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 30544907)
1. Shear-Assisted Laser Transfer of Metal Nanoparticle Ink to an Elastomer Substrate. Shin W; Lim J; Lee Y; Park S; Kim H; Cho H; Shin J; Yoon Y; Lee H; Kim HJ; Han S; Ko SH; Hong S Materials (Basel); 2018 Dec; 11(12):. PubMed ID: 30544907 [TBL] [Abstract][Full Text] [Related]
2. Continuous-Wave Laser-Induced Transfer of Metal Nanoparticles to Arbitrary Polymer Substrates. Lim J; Kim Y; Shin J; Lee Y; Shin W; Qu W; Hwang E; Park S; Hong S Nanomaterials (Basel); 2020 Apr; 10(4):. PubMed ID: 32272614 [TBL] [Abstract][Full Text] [Related]
3. Micropatterning of Metal Nanoparticle Ink by Laser-Induced Thermocapillary Flow. Park S; Kwon J; Lim J; Shin W; Lee Y; Lee H; Kim HJ; Han S; Yeo J; Ko SH; Hong S Nanomaterials (Basel); 2018 Aug; 8(9):. PubMed ID: 30135357 [TBL] [Abstract][Full Text] [Related]
4. Nonvacuum, maskless fabrication of a flexible metal grid transparent conductor by low-temperature selective laser sintering of nanoparticle ink. Hong S; Yeo J; Kim G; Kim D; Lee H; Kwon J; Lee H; Lee P; Ko SH ACS Nano; 2013 Jun; 7(6):5024-31. PubMed ID: 23731244 [TBL] [Abstract][Full Text] [Related]
5. Effect of laser-induced temperature field on the characteristics of laser-sintered silver nanoparticle ink. Lee DG; Kim DK; Moon YJ; Moon SJ Nanotechnology; 2013 Jul; 24(26):265702. PubMed ID: 23732285 [TBL] [Abstract][Full Text] [Related]
6. Estimation of the properties of silver nanoparticle ink during laser sintering via in-situ electrical resistance measurement. Lee DG; Kim DK; Moon YJ; Moon SJ J Nanosci Nanotechnol; 2013 Sep; 13(9):5982-7. PubMed ID: 24205585 [TBL] [Abstract][Full Text] [Related]
7. Thermal-Sinterable EGaIn Nanoparticle Inks for Highly Deformable Bioelectrode Arrays. Niu Y; Tian G; Liang C; Wang T; Ma X; Gong G; Qi D Adv Healthc Mater; 2023 Apr; 12(10):e2202531. PubMed ID: 36562213 [TBL] [Abstract][Full Text] [Related]
8. Vacuum-free, maskless patterning of Ni electrodes by laser reductive sintering of NiO nanoparticle ink and its application to transparent conductors. Lee D; Paeng D; Park HK; Grigoropoulos CP ACS Nano; 2014 Oct; 8(10):9807-14. PubMed ID: 25130917 [TBL] [Abstract][Full Text] [Related]
9. Ultrastretchable Conductor Fabricated on Skin-Like Hydrogel-Elastomer Hybrid Substrates for Skin Electronics. Kim SH; Jung S; Yoon IS; Lee C; Oh Y; Hong JM Adv Mater; 2018 Jun; 30(26):e1800109. PubMed ID: 29761554 [TBL] [Abstract][Full Text] [Related]
10. Ultrasonic-Enabled Nondestructive and Substrate-Independent Liquid Metal Ink Sintering. Liu S; Xu Z; Li G; Li Z; Ye Z; Xu Z; Chen W; Jin D; Ma X Adv Sci (Weinh); 2023 Aug; 10(23):e2301292. PubMed ID: 37316967 [TBL] [Abstract][Full Text] [Related]
11. Next generation non-vacuum, maskless, low temperature nanoparticle ink laser digital direct metal patterning for a large area flexible electronics. Yeo J; Hong S; Lee D; Hotz N; Lee MT; Grigoropoulos CP; Ko SH PLoS One; 2012; 7(8):e42315. PubMed ID: 22900011 [TBL] [Abstract][Full Text] [Related]
12. Printed and Laser-Activated Liquid Metal-Elastomer Conductors Enabled by Ethanol/PDMS/Liquid Metal Double Emulsions. Liu S; Kim SY; Henry KE; Shah DS; Kramer-Bottiglio R ACS Appl Mater Interfaces; 2021 Jun; 13(24):28729-28736. PubMed ID: 34125509 [TBL] [Abstract][Full Text] [Related]
13. Selective sintering of metal nanoparticle ink for maskless fabrication of an electrode micropattern using a spatially modulated laser beam by a digital micromirror device. An K; Hong S; Han S; Lee H; Yeo J; Ko SH ACS Appl Mater Interfaces; 2014 Feb; 6(4):2786-90. PubMed ID: 24471931 [TBL] [Abstract][Full Text] [Related]
14. Flexible Heater Fabrication Using Amino Acid-Based Ink and Laser-Direct Writing. Koo S Micromachines (Basel); 2022 Dec; 13(12):. PubMed ID: 36557507 [TBL] [Abstract][Full Text] [Related]
15. Bi-Phasic Ag-In-Ga-Embedded Elastomer Inks for Digitally Printed, Ultra-Stretchable, Multi-layer Electronics. Lopes PA; Fernandes DF; Silva AF; Marques DG; de Almeida AT; Majidi C; Tavakoli M ACS Appl Mater Interfaces; 2021 Mar; 13(12):14552-14561. PubMed ID: 33689286 [TBL] [Abstract][Full Text] [Related]
16. Printable Liquid Metal Microparticle Ink for Ultrastretchable Electronics. Li Y; Feng S; Cao S; Zhang J; Kong D ACS Appl Mater Interfaces; 2020 Nov; 12(45):50852-50859. PubMed ID: 33108172 [TBL] [Abstract][Full Text] [Related]
17. Effect of Substrates on Femtosecond Laser Pulse-Induced Reductive Sintering of Cobalt Oxide Nanoparticles. Mizoshiri M; Yoshidomi K; Darkhanbaatar N; Khairullina EM; Tumkin II Nanomaterials (Basel); 2021 Dec; 11(12):. PubMed ID: 34947705 [TBL] [Abstract][Full Text] [Related]
18. Nanoalloy Printed and Pulse-Laser Sintered Flexible Sensor Devices with Enhanced Stability and Materials Compatibility. Zhao W; Rovere T; Weerawarne D; Osterhoudt G; Kang N; Joseph P; Luo J; Shim B; Poliks M; Zhong CJ ACS Nano; 2015 Jun; 9(6):6168-77. PubMed ID: 26034999 [TBL] [Abstract][Full Text] [Related]
19. A novel microscale selective laser sintering (μ-SLS) process for the fabrication of microelectronic parts. Roy NK; Behera D; Dibua OG; Foong CS; Cullinan MA Microsyst Nanoeng; 2019; 5():64. PubMed ID: 34567614 [TBL] [Abstract][Full Text] [Related]
20. Direct Writing of Functional Layer by Selective Laser Sintering of Nanoparticles for Emerging Applications: A Review. Hwang E; Hong J; Yoon J; Hong S Materials (Basel); 2022 Aug; 15(17):. PubMed ID: 36079386 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]