These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 30544918)

  • 1. Nanoindentation of Soft Biological Materials.
    Qian L; Zhao H
    Micromachines (Basel); 2018 Dec; 9(12):. PubMed ID: 30544918
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental and Data Analysis Workflow for Soft Matter Nanoindentation.
    Ciccone G; Azevedo Gonzalez Oliva M; Antonovaite N; Lüchtefeld I; Salmeron-Sanchez M; Vassalli M
    J Vis Exp; 2022 Jan; (179):. PubMed ID: 35129176
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measurement of nanomechanical properties of biomolecules using atomic force microscopy.
    Kurland NE; Drira Z; Yadavalli VK
    Micron; 2012 Feb; 43(2-3):116-28. PubMed ID: 21890365
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Atomic Force Microscopy Methods to Measure Tumor Mechanical Properties.
    Najera J; Rosenberger MR; Datta M
    Cancers (Basel); 2023 Jun; 15(13):. PubMed ID: 37444394
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A methodological framework for nanomechanical characterization of soft biomaterials and polymers.
    Arevalo SE; Ebenstein DM; Pruitt LA
    J Mech Behav Biomed Mater; 2022 Oct; 134():105384. PubMed ID: 35961240
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mapping the mechanical properties of biomaterials on different length scales: depth-sensing indentation and AFM based nanoindentation.
    Rettler E; Hoeppener S; Sigusch BW; Schubert US
    J Mater Chem B; 2013 Jun; 1(22):2789-2806. PubMed ID: 32260867
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanomechanical Mapping of Hard Tissues by Atomic Force Microscopy: An Application to Cortical Bone.
    Bontempi M; Salamanna F; Capozza R; Visani A; Fini M; Gambardella A
    Materials (Basel); 2022 Oct; 15(21):. PubMed ID: 36363104
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Atomic force microscopy nanoindentation kinetics and subsurface visualization of soft inhomogeneous polymer.
    Morozov IA
    Microsc Res Tech; 2021 Sep; 84(9):1959-1966. PubMed ID: 33713508
    [TBL] [Abstract][Full Text] [Related]  

  • 9. AFM-based indentation method for measuring the relaxation property of living cells.
    Sheng JY; Mo C; Li GY; Zhao HC; Cao Y; Feng XQ
    J Biomech; 2021 Jun; 122():110444. PubMed ID: 33933864
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of mechanical properties of soft tissue scaffolds by atomic force microscopy nanoindentation.
    Zhu Y; Dong Z; Wejinya UC; Jin S; Ye K
    J Biomech; 2011 Sep; 44(13):2356-61. PubMed ID: 21794867
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Finite element simulation for the mechanical characterization of soft biological materials by atomic force microscopy.
    Valero C; Navarro B; Navajas D; García-Aznar JM
    J Mech Behav Biomed Mater; 2016 Sep; 62():222-235. PubMed ID: 27214690
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanomechanics of Cells and Biomaterials Studied by Atomic Force Microscopy.
    Kilpatrick JI; Revenko I; Rodriguez BJ
    Adv Healthc Mater; 2015 Nov; 4(16):2456-74. PubMed ID: 26200464
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of a novel nanoindentation technique by utilizing a dual-probe AFM system.
    Cinar E; Sahin F; Yablon D
    Beilstein J Nanotechnol; 2015; 6():2015-27. PubMed ID: 26665072
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coarse-grained elastic network modelling: A fast and stable numerical tool to characterize mesenchymal stem cells subjected to AFM nanoindentation measurements.
    Vaiani L; Migliorini E; Cavalcanti-Adam EA; Uva AE; Fiorentino M; Gattullo M; Manghisi VM; Boccaccio A
    Mater Sci Eng C Mater Biol Appl; 2021 Feb; 121():111860. PubMed ID: 33579492
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Side-view optical microscopy-assisted atomic force microscopy for thickness-dependent nanobiomechanics.
    Yang Y; Li M
    Nanoscale Adv; 2024 Jun; 6(13):3306-3319. PubMed ID: 38933861
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Robust strategies for automated AFM force curve analysis--I. Non-adhesive indentation of soft, inhomogeneous materials.
    Lin DC; Dimitriadis EK; Horkay F
    J Biomech Eng; 2007 Jun; 129(3):430-40. PubMed ID: 17536911
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent advances in AFM-based biological characterization and applications at multiple levels.
    Liang W; Shi H; Yang X; Wang J; Yang W; Zhang H; Liu L
    Soft Matter; 2020 Sep; ():. PubMed ID: 32996549
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanomechanical assessment of human and murine collagen fibrils via atomic force microscopy cantilever-based nanoindentation.
    Andriotis OG; Manuyakorn W; Zekonyte J; Katsamenis OL; Fabri S; Howarth PH; Davies DE; Thurner PJ
    J Mech Behav Biomed Mater; 2014 Nov; 39():9-26. PubMed ID: 25081997
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Size effects in nanoindentation of hard and soft surfaces.
    Alderighi M; Ierardi V; Fuso F; Allegrini M; Solaro R
    Nanotechnology; 2009 Jun; 20(23):235703. PubMed ID: 19451684
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterizing viscoelastic mechanical properties of highly compliant polymers and biological tissues using impact indentation.
    Mijailovic AS; Qing B; Fortunato D; Van Vliet KJ
    Acta Biomater; 2018 Apr; 71():388-397. PubMed ID: 29477455
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.