These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 30545119)

  • 1. Freeform Perfusable Microfluidics Embedded in Hydrogel Matrices.
    Štumberger G; Vihar B
    Materials (Basel); 2018 Dec; 11(12):. PubMed ID: 30545119
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Long-Fiber Embedded Hydrogel 3D Printing for Structural Reinforcement.
    Sun W; Tashman JW; Shiwarski DJ; Feinberg AW; Webster-Wood VA
    ACS Biomater Sci Eng; 2022 Jan; 8(1):303-313. PubMed ID: 34860495
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inkjet-Spray Hybrid Printing for 3D Freeform Fabrication of Multilayered Hydrogel Structures.
    Yoon S; Park JA; Lee HR; Yoon WH; Hwang DS; Jung S
    Adv Healthc Mater; 2018 Jul; 7(14):e1800050. PubMed ID: 29708307
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels.
    Hinton TJ; Jallerat Q; Palchesko RN; Park JH; Grodzicki MS; Shue HJ; Ramadan MH; Hudson AR; Feinberg AW
    Sci Adv; 2015 Oct; 1(9):e1500758. PubMed ID: 26601312
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D bioprinting of complex channels within cell-laden hydrogels.
    Ji S; Almeida E; Guvendiren M
    Acta Biomater; 2019 Sep; 95():214-224. PubMed ID: 30831327
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Void-free 3D Bioprinting for In-situ Endothelialization and Microfluidic Perfusion.
    Ouyang L; Armstrong JPK; Chen Q; Lin Y; Stevens MM
    Adv Funct Mater; 2020 Jan; 30(1):. PubMed ID: 33071714
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Void-free 3D Bioprinting for In-situ Endothelialization and Microfluidic Perfusion.
    Ouyang L; Armstrong JPK; Chen Q; Lin Y; Stevens MM
    Adv Funct Mater; 2020 Jun; 30(26):1909009. PubMed ID: 35677899
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering of Hydrogel Materials with Perfusable Microchannels for Building Vascularized Tissues.
    Xie R; Zheng W; Guan L; Ai Y; Liang Q
    Small; 2020 Apr; 16(15):e1902838. PubMed ID: 31559675
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D Freeform Printing of Nanocomposite Hydrogels through
    Chen S; Jang TS; Pan HM; Jung HD; Sia MW; Xie S; Hang Y; Chong SKM; Wang D; Song J
    Int J Bioprint; 2020; 6(2):258. PubMed ID: 32782988
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D Printing PDMS Elastomer in a Hydrophilic Support Bath via Freeform Reversible Embedding.
    Hinton TJ; Hudson A; Pusch K; Lee A; Feinberg AW
    ACS Biomater Sci Eng; 2016 Oct; 2(10):1781-1786. PubMed ID: 27747289
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Poloxamer/Poly(ethylene glycol) Self-Healing Hydrogel for High-Precision Freeform Reversible Embedding of Suspended Hydrogel.
    Colly A; Marquette C; Courtial EJ
    Langmuir; 2021 Apr; 37(14):4154-4162. PubMed ID: 33787263
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On-demand three-dimensional freeform fabrication of multi-layered hydrogel scaffold with fluidic channels.
    Lee W; Lee V; Polio S; Keegan P; Lee JH; Fischer K; Park JK; Yoo SS
    Biotechnol Bioeng; 2010 Apr; 105(6):1178-86. PubMed ID: 19953677
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vessel-on-a-chip with Hydrogel-based Microfluidics.
    Nie J; Gao Q; Wang Y; Zeng J; Zhao H; Sun Y; Shen J; Ramezani H; Fu Z; Liu Z; Xiang M; Fu J; Zhao P; Chen W; He Y
    Small; 2018 Nov; 14(45):e1802368. PubMed ID: 30307698
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Freeform, Reconfigurable Embedded Printing of All-Aqueous 3D Architectures.
    Luo G; Yu Y; Yuan Y; Chen X; Liu Z; Kong T
    Adv Mater; 2019 Dec; 31(49):e1904631. PubMed ID: 31609497
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D Printing of Vascular Tubes Using Bioelastomer Prepolymers by Freeform Reversible Embedding.
    Savoji H; Davenport Huyer L; Mohammadi MH; Lun Lai BF; Rafatian N; Bannerman D; Shoaib M; Bobicki ER; Ramachandran A; Radisic M
    ACS Biomater Sci Eng; 2020 Mar; 6(3):1333-1343. PubMed ID: 33455372
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Embedded Multimaterial Extrusion Bioprinting.
    Rocca M; Fragasso A; Liu W; Heinrich MA; Zhang YS
    SLAS Technol; 2018 Apr; 23(2):154-163. PubMed ID: 29132232
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A highly printable and biocompatible hydrogel composite for direct printing of soft and perfusable vasculature-like structures.
    Suntornnond R; Tan EYS; An J; Chua CK
    Sci Rep; 2017 Dec; 7(1):16902. PubMed ID: 29203812
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D-printed microfluidic chips with patterned, cell-laden hydrogel constructs.
    Knowlton S; Yu CH; Ersoy F; Emadi S; Khademhosseini A; Tasoglu S
    Biofabrication; 2016 Jun; 8(2):025019. PubMed ID: 27321481
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Continuous fiber extruder for desktop 3D printers toward long fiber embedded hydrogel 3D printing.
    Sun W; Feinberg A; Webster-Wood V
    HardwareX; 2022 Apr; 11():e00297. PubMed ID: 35509909
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biofabrication under fluorocarbon: a novel freeform fabrication technique to generate high aspect ratio tissue-engineered constructs.
    Blaeser A; Duarte Campos DF; Weber M; Neuss S; Theek B; Fischer H; Jahnen-Dechent W
    Biores Open Access; 2013 Oct; 2(5):374-84. PubMed ID: 24083093
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.