These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 30545218)

  • 1. Isobaric Labeling Quantitative Metaproteomics for the Study of Gut Microbiome Response to Arsenic.
    Liu CW; Chi L; Tu P; Xue J; Ru H; Lu K
    J Proteome Res; 2019 Mar; 18(3):970-981. PubMed ID: 30545218
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MetaPro-IQ: a universal metaproteomic approach to studying human and mouse gut microbiota.
    Zhang X; Ning Z; Mayne J; Moore JI; Li J; Butcher J; Deeke SA; Chen R; Chiang CK; Wen M; Mack D; Stintzi A; Figeys D
    Microbiome; 2016 Jun; 4(1):31. PubMed ID: 27343061
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Benchmarking low- and high-throughput protein cleanup and digestion methods for human fecal metaproteomics.
    Tanca A; Deledda MA; De Diego L; Abbondio M; Uzzau S
    mSystems; 2024 Jul; 9(7):e0066124. PubMed ID: 38934547
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of Sample Preservation and Storage Methods for Metaproteomics Analysis of Intestinal Microbiomes.
    Mordant A; Kleiner M
    Microbiol Spectr; 2021 Dec; 9(3):e0187721. PubMed ID: 34908431
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative metaproteomics: functional insights into microbial communities.
    Pan C; Banfield JF
    Methods Mol Biol; 2014; 1096():231-40. PubMed ID: 24515373
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of Dietary Resistant Starch on the Human Gut Microbiome, Metaproteome, and Metabolome.
    Maier TV; Lucio M; Lee LH; VerBerkmoes NC; Brislawn CJ; Bernhardt J; Lamendella R; McDermott JE; Bergeron N; Heinzmann SS; Morton JT; González A; Ackermann G; Knight R; Riedel K; Krauss RM; Schmitt-Kopplin P; Jansson JK
    mBio; 2017 Oct; 8(5):. PubMed ID: 29042495
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Landscape and Perspectives of the Human Gut Metaproteomics.
    Sun Z; Ning Z; Figeys D
    Mol Cell Proteomics; 2024 May; 23(5):100763. PubMed ID: 38608842
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sex-Specific Effects of Arsenic Exposure on the Trajectory and Function of the Gut Microbiome.
    Chi L; Bian X; Gao B; Ru H; Tu P; Lu K
    Chem Res Toxicol; 2016 Jun; 29(6):949-51. PubMed ID: 27268458
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative Metaproteomics and Activity-Based Probe Enrichment Reveals Significant Alterations in Protein Expression from a Mouse Model of Inflammatory Bowel Disease.
    Mayers MD; Moon C; Stupp GS; Su AI; Wolan DW
    J Proteome Res; 2017 Feb; 16(2):1014-1026. PubMed ID: 28052195
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessing the impact of protein extraction methods for human gut metaproteomics.
    Zhang X; Li L; Mayne J; Ning Z; Stintzi A; Figeys D
    J Proteomics; 2018 May; 180():120-127. PubMed ID: 28705725
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Data-independent acquisition boosts quantitative metaproteomics for deep characterization of gut microbiota.
    Zhao J; Yang Y; Xu H; Zheng J; Shen C; Chen T; Wang T; Wang B; Yi J; Zhao D; Wu E; Qin Q; Xia L; Qiao L
    NPJ Biofilms Microbiomes; 2023 Jan; 9(1):4. PubMed ID: 36693863
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Perspective and Guidelines for Metaproteomics in Microbiome Studies.
    Zhang X; Figeys D
    J Proteome Res; 2019 Jun; 18(6):2370-2380. PubMed ID: 31009573
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep Metaproteomics Approach for the Study of Human Microbiomes.
    Zhang X; Chen W; Ning Z; Mayne J; Mack D; Stintzi A; Tian R; Figeys D
    Anal Chem; 2017 Sep; 89(17):9407-9415. PubMed ID: 28749657
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Data-Independent Acquisition Mass Spectrometry in Metaproteomics of Gut Microbiota-Implementation and Computational Analysis.
    Aakko J; Pietilä S; Suomi T; Mahmoudian M; Toivonen R; Kouvonen P; Rokka A; Hänninen A; Elo LL
    J Proteome Res; 2020 Jan; 19(1):432-436. PubMed ID: 31755272
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microbial metaproteomics for characterizing the range of metabolic functions and activities of human gut microbiota.
    Xiong W; Abraham PE; Li Z; Pan C; Hettich RL
    Proteomics; 2015 Oct; 15(20):3424-38. PubMed ID: 25914197
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metaproteomic strategies and applications for gut microbial research.
    Xiao M; Yang J; Feng Y; Zhu Y; Chai X; Wang Y
    Appl Microbiol Biotechnol; 2017 Apr; 101(8):3077-3088. PubMed ID: 28293710
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of metaproteomics workflows for deciphering the functions of gut microbiota in an animal model of obesity.
    Guirro M; Herrero P; Costa A; Gual-Grau A; Ceretó-Massagué A; Hernández A; Torrell H; Arola L; Canela N
    J Proteomics; 2019 Oct; 209():103489. PubMed ID: 31445216
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metaproteomics Study of the Gut Microbiome.
    Lai LA; Tong Z; Chen R; Pan S
    Methods Mol Biol; 2019; 1871():123-132. PubMed ID: 30276736
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heavy metal exposure causes changes in the metabolic health-associated gut microbiome and metabolites.
    Li X; Brejnrod AD; Ernst M; Rykær M; Herschend J; Olsen NMC; Dorrestein PC; Rensing C; Sørensen SJ
    Environ Int; 2019 May; 126():454-467. PubMed ID: 30844581
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metaproteomic and 16S rRNA Gene Sequencing Analysis of the Infant Fecal Microbiome.
    Cortes L; Wopereis H; Tartiere A; Piquenot J; Gouw JW; Tims S; Knol J; Chelsky D
    Int J Mol Sci; 2019 Mar; 20(6):. PubMed ID: 30901843
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.