These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 30545884)

  • 1. Evolution of a highly active and enantiospecific metalloenzyme from short peptides.
    Studer S; Hansen DA; Pianowski ZL; Mittl PRE; Debon A; Guffy SL; Der BS; Kuhlman B; Hilvert D
    Science; 2018 Dec; 362(6420):1285-1288. PubMed ID: 30545884
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational redesign of a mononuclear zinc metalloenzyme for organophosphate hydrolysis.
    Khare SD; Kipnis Y; Greisen P; Takeuchi R; Ashani Y; Goldsmith M; Song Y; Gallaher JL; Silman I; Leader H; Sussman JL; Stoddard BL; Tawfik DS; Baker D
    Nat Chem Biol; 2012 Feb; 8(3):294-300. PubMed ID: 22306579
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulating the catalytic effect of a designed mononuclear zinc metalloenzyme that catalyzes the hydrolysis of phosphate triesters.
    Singh MK; Chu ZT; Warshel A
    J Phys Chem B; 2014 Oct; 118(42):12146-52. PubMed ID: 25233046
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A designed supramolecular protein assembly with in vivo enzymatic activity.
    Song WJ; Tezcan FA
    Science; 2014 Dec; 346(6216):1525-8. PubMed ID: 25525249
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient Lewis acid catalysis of an abiological reaction in a de novo protein scaffold.
    Basler S; Studer S; Zou Y; Mori T; Ota Y; Camus A; Bunzel HA; Helgeson RC; Houk KN; Jiménez-Osés G; Hilvert D
    Nat Chem; 2021 Mar; 13(3):231-235. PubMed ID: 33526894
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A metal ion regulated artificial metalloenzyme.
    Bersellini M; Roelfes G
    Dalton Trans; 2017 Mar; 46(13):4325-4330. PubMed ID: 28281708
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Periplasmic Screening for Artificial Metalloenzymes.
    Jeschek M; Panke S; Ward TR
    Methods Enzymol; 2016; 580():539-56. PubMed ID: 27586348
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Directed evolution of artificial metalloenzymes for in vivo metathesis.
    Jeschek M; Reuter R; Heinisch T; Trindler C; Klehr J; Panke S; Ward TR
    Nature; 2016 Sep; 537(7622):661-665. PubMed ID: 27571282
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Catalysis by a de novo zinc-mediated protein interface: implications for natural enzyme evolution and rational enzyme engineering.
    Der BS; Edwards DR; Kuhlman B
    Biochemistry; 2012 May; 51(18):3933-40. PubMed ID: 22510088
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Binding of Cu(II) or Zn(II) in a de novo designed triple-stranded alpha-helical coiled-coil toward a prototype for a metalloenzyme.
    Kiyokawa T; Kanaori K; Tajima K; Koike M; Mizuno T; Oku JI; Tanaka T
    J Pept Res; 2004 Apr; 63(4):347-53. PubMed ID: 15102052
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational reconstruction of primordial prototypes of elementary functional loops in modern proteins.
    Goncearenco A; Berezovsky IN
    Bioinformatics; 2011 Sep; 27(17):2368-75. PubMed ID: 21724592
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Directed Evolution of Artificial Metalloenzymes: Genetic Optimization of the Catalytic Activity.
    Hestericová M
    Chimia (Aarau); 2018 Apr; 72(4):189-192. PubMed ID: 29720306
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Of folding and function: understanding active-site context through metalloenzyme design.
    Harris KL; Lim S; Franklin SJ
    Inorg Chem; 2006 Dec; 45(25):10002-12. PubMed ID: 17140195
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Bioinorganic Approach to Fragment-Based Drug Discovery Targeting Metalloenzymes.
    Cohen SM
    Acc Chem Res; 2017 Aug; 50(8):2007-2016. PubMed ID: 28715203
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Revisiting and re-engineering the classical zinc finger peptide: consensus peptide-1 (CP-1).
    Besold AN; Widger LR; Namuswe F; Michalek JL; Michel SL; Goldberg DP
    Mol Biosyst; 2016 Apr; 12(4):1183-93. PubMed ID: 26936488
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Femtomolar Zn(II) affinity in a peptide-based ligand designed to model thiolate-rich metalloprotein active sites.
    Petros AK; Reddi AR; Kennedy ML; Hyslop AG; Gibney BR
    Inorg Chem; 2006 Dec; 45(25):9941-58. PubMed ID: 17140191
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design and evolution of an enzyme with a non-canonical organocatalytic mechanism.
    Burke AJ; Lovelock SL; Frese A; Crawshaw R; Ortmayer M; Dunstan M; Levy C; Green AP
    Nature; 2019 Jun; 570(7760):219-223. PubMed ID: 31132786
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of protons in the thermodynamic contribution of a Zn(II)-Cys4 site toward metalloprotein stability.
    Reddi AR; Gibney BR
    Biochemistry; 2007 Mar; 46(12):3745-58. PubMed ID: 17326664
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A combinatorial approach to minimal peptide models of a metalloprotein active site.
    Namuswe F; Goldberg DP
    Chem Commun (Camb); 2006 Jun; (22):2326-8. PubMed ID: 16733568
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metalloenzyme inspired dizinc catalyst for the polymerization of lactide.
    Williams CK; Brooks NR; Hillmyer MA; Tolman WB
    Chem Commun (Camb); 2002 Sep; (18):2132-3. PubMed ID: 12357810
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.