These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 30546009)

  • 1. Assessing the nature of the charge-transfer electronic states in organic solar cells.
    Chen XK; Coropceanu V; Brédas JL
    Nat Commun; 2018 Dec; 9(1):5295. PubMed ID: 30546009
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hybridization of Local Exciton and Charge-Transfer States Reduces Nonradiative Voltage Losses in Organic Solar Cells.
    Eisner FD; Azzouzi M; Fei Z; Hou X; Anthopoulos TD; Dennis TJS; Heeney M; Nelson J
    J Am Chem Soc; 2019 Apr; 141(15):6362-6374. PubMed ID: 30882218
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Emissive and charge-generating donor-acceptor interfaces for organic optoelectronics with low voltage losses.
    Ullbrich S; Benduhn J; Jia X; Nikolis VC; Tvingstedt K; Piersimoni F; Roland S; Liu Y; Wu J; Fischer A; Neher D; Reineke S; Spoltore D; Vandewal K
    Nat Mater; 2019 May; 18(5):459-464. PubMed ID: 30936478
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluating Electronic Couplings for Excited State Charge Transfer Based on Maximum Occupation Method ΔSCF Quasi-Adiabatic States.
    Liu J; Zhang Y; Bao P; Yi Y
    J Chem Theory Comput; 2017 Feb; 13(2):843-851. PubMed ID: 28072522
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Local Excitation/Charge-Transfer Hybridization Simultaneously Promotes Charge Generation and Reduces Nonradiative Voltage Loss in Nonfullerene Organic Solar Cells.
    Han G; Yi Y
    J Phys Chem Lett; 2019 Jun; 10(11):2911-2918. PubMed ID: 31088080
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interfacial and Bulk Nanostructures Control Loss of Charges in Organic Solar Cells.
    Naveed HB; Zhou K; Ma W
    Acc Chem Res; 2019 Oct; 52(10):2904-2915. PubMed ID: 31577121
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Probing and Exploiting the Interplay between Nuclear and Electronic Motion in Charge Transfer Processes.
    Delor M; Sazanovich IV; Towrie M; Weinstein JA
    Acc Chem Res; 2015 Apr; 48(4):1131-9. PubMed ID: 25789559
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrafast exciton dissociation followed by nongeminate charge recombination in PCDTBT:PCBM photovoltaic blends.
    Etzold F; Howard IA; Mauer R; Meister M; Kim TD; Lee KS; Baek NS; Laquai F
    J Am Chem Soc; 2011 Jun; 133(24):9469-79. PubMed ID: 21553906
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of interfacial molecular orientation on radiative recombination and charge generation efficiency.
    Ran NA; Roland S; Love JA; Savikhin V; Takacs CJ; Fu YT; Li H; Coropceanu V; Liu X; Brédas JL; Bazan GC; Toney MF; Neher D; Nguyen TQ
    Nat Commun; 2017 Jul; 8(1):79. PubMed ID: 28724989
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Energetics of the charge generation in organic donor-acceptor interfaces.
    Andermann AM; Rego LGC
    J Chem Phys; 2022 Jan; 156(2):024104. PubMed ID: 35032994
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spin-dependent charge transfer state design rules in organic photovoltaics.
    Chang W; Congreve DN; Hontz E; Bahlke ME; McMahon DP; Reineke S; Wu TC; Bulović V; Van Voorhis T; Baldo MA
    Nat Commun; 2015 Mar; 6():6415. PubMed ID: 25762410
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electronic and optical properties of dye-sensitized TiO₂ interfaces.
    Pastore M; Selloni A; Fantacci S; De Angelis F
    Top Curr Chem; 2014; 347():1-45. PubMed ID: 24488437
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reducing Non-Radiative Voltage Losses by Methylation of Push-Pull Molecular Donors in Organic Solar Cells.
    Baisinger L; Andrés Castán JM; Simón Marqués P; Londi G; Göhler C; Deibel C; Beljonne D; Cabanetos C; Blanchard P; Benduhn J; Spoltore D; Leo K
    ChemSusChem; 2021 Sep; 14(17):3622-3631. PubMed ID: 34111333
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Magneto-optical investigations on the formation and dissociation of intermolecular charge-transfer complexes at donor-acceptor interfaces in bulk-heterojunction organic solar cells.
    Zang H; Xu Z; Hu B
    J Phys Chem B; 2010 May; 114(17):5704-9. PubMed ID: 20392090
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Cost of Converting Excitons into Free Charge Carriers in Organic Solar Cells.
    Vandewal K; Mertens S; Benduhn J; Liu Q
    J Phys Chem Lett; 2020 Jan; 11(1):129-135. PubMed ID: 31829597
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mesoscopic features of charge generation in organic semiconductors.
    Savoie BM; Jackson NE; Chen LX; Marks TJ; Ratner MA
    Acc Chem Res; 2014 Nov; 47(11):3385-94. PubMed ID: 25051395
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrafast Long-Range Charge Separation in Organic Photovoltaics: Promotion by Off-Diagonal Vibronic Couplings and Entropy Increase.
    Yao Y; Xie X; Ma H
    J Phys Chem Lett; 2016 Dec; 7(23):4830-4835. PubMed ID: 27934051
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lower limits for non-radiative recombination loss in organic donor/acceptor complexes.
    Liu Y; Zheng Z; Coropceanu V; Brédas JL; Ginger DS
    Mater Horiz; 2022 Jan; 9(1):325-333. PubMed ID: 34842253
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interfacial Charge Transfer States in Condensed Phase Systems.
    Vandewal K
    Annu Rev Phys Chem; 2016 May; 67():113-33. PubMed ID: 26980308
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exciton-vibrational resonance and dynamics of charge separation in the photosystem II reaction center.
    Novoderezhkin VI; Romero E; Prior J; van Grondelle R
    Phys Chem Chem Phys; 2017 Feb; 19(7):5195-5208. PubMed ID: 28149991
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.