BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 30546119)

  • 1. Comparative genome analysis of marine purple sulfur bacterium Marichromatium gracile YL28 reveals the diverse nitrogen cycle mechanisms and habitat-specific traits.
    Zhu B; Zhang X; Zhao C; Chen S; Yang S
    Sci Rep; 2018 Dec; 8(1):17803. PubMed ID: 30546119
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nitrogen transformation under different dissolved oxygen levels by the anoxygenic phototrophic bacterium Marichromatium gracile.
    Hong X; Chen Z; Zhao C; Yang S
    World J Microbiol Biotechnol; 2017 Jun; 33(6):113. PubMed ID: 28470424
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of Supplement of
    Cui L; Zhu B; Zhang X; Chan Z; Zhao C; Zeng R; Yang S; Chen S
    Genes (Basel); 2020 Dec; 12(1):. PubMed ID: 33396721
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of Marichromatium gracile YL28 on the nitrogen management in the aquaculture pond water.
    Zhu B; Chen S; Zhao C; Zhong W; Zeng R; Yang S
    Bioresour Technol; 2019 Nov; 292():121917. PubMed ID: 31408778
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influences of organic nitrogen on the removal of inorganic nitrogen from complicated marine aquaculture water by Marichromatium gracile YL28.
    Cui L; Zhu B; Zhang X; Zhao C; Wang S; Ke C; Yang S
    J Biosci Bioeng; 2020 Aug; 130(2):179-186. PubMed ID: 32381439
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel mechanism for dissimilatory nitrate reduction to ammonium in
    Egas RA; Kurth JM; Boeren S; Sousa DZ; Welte CU; Sánchez-Andrea I
    mSystems; 2024 Mar; 9(3):e0096723. PubMed ID: 38323850
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nitrogen-limited mangrove ecosystems conserve N through dissimilatory nitrate reduction to ammonium.
    Fernandes SO; Bonin PC; Michotey VD; Garcia N; LokaBharathi PA
    Sci Rep; 2012; 2():419. PubMed ID: 22639727
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coupled relationships among anammox, denitrification, and dissimilatory nitrate reduction to ammonium along salinity gradients in a Chinese estuarine wetland.
    Zhou Z; Ge L; Huang Y; Liu Y; Wang S
    J Environ Sci (China); 2021 Aug; 106():39-46. PubMed ID: 34210438
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Identification and characterization of a purple sulfur bacterium from mangrove with rhodopin as predominant carotenoid].
    Zhao J; Fu Y; Zhao C; Yang S; Qu Y; Jiao N
    Wei Sheng Wu Xue Bao; 2011 Oct; 51(10):1318-25. PubMed ID: 22233052
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The rates and players of denitrification, dissimilatory nitrate reduction to ammonia (DNRA) and anaerobic ammonia oxidation (anammox) in mangrove soils.
    Luvizotto DM; Araujo JE; Silva MCP; Dias ACF; Kraft B; Tegetmeye H; Strous M; Andreote FD
    An Acad Bras Cienc; 2019; 91(suppl 1):e20180373. PubMed ID: 30379272
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Filamentous Giant Beggiatoaceae from the Guaymas Basin Are Capable of both Denitrification and Dissimilatory Nitrate Reduction to Ammonium.
    Schutte CA; Teske A; MacGregor BJ; Salman-Carvalho V; Lavik G; Hach P; de Beer D
    Appl Environ Microbiol; 2018 Aug; 84(15):. PubMed ID: 29802192
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of sulfur sources on the competition between denitrification and DNRA.
    Li S; Jiang Z; Ji G
    Environ Pollut; 2022 Jul; 305():119322. PubMed ID: 35447253
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome-wide transcriptional profiling of the purple sulfur bacterium Allochromatium vinosum DSM 180T during growth on different reduced sulfur compounds.
    Weissgerber T; Dobler N; Polen T; Latus J; Stockdreher Y; Dahl C
    J Bacteriol; 2013 Sep; 195(18):4231-45. PubMed ID: 23873913
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular analysis of microbial nitrogen transformation and removal potential in the plant rhizosphere of artificial tidal wetlands across salinity gradients.
    Zhang M; Peng Y; Yan P; Huang JC; He S; Sun S; Bai X; Tian Y
    Environ Res; 2022 Dec; 215(Pt 1):114235. PubMed ID: 36055394
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coupling effects of nitrate reduction and sulfur oxidation in a subtropical marine mangrove ecosystem with Spartina alterniflora invasion.
    Nie S; Mo S; Gao T; Yan B; Shen P; Kashif M; Zhang Z; Li J; Jiang C
    Sci Total Environ; 2023 Mar; 862():160930. PubMed ID: 36526186
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Communities of purple sulfur bacteria in a Baltic Sea coastal lagoon analyzed by puf LM gene libraries and the impact of temperature and NaCl concentration in experimental enrichment cultures.
    Tank M; Blümel M; Imhoff JF
    FEMS Microbiol Ecol; 2011 Dec; 78(3):428-38. PubMed ID: 22066777
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fixed nitrogen removal mechanisms associated with sulfur cycling in tropical wetlands.
    Wang Q; Rogers MJ; Ng SS; He J
    Water Res; 2021 Feb; 189():116619. PubMed ID: 33232815
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dissimilatory nitrate reduction to ammonium conserves nitrogen in anthropogenically affected subtropical mangrove sediments in Southeast China.
    Cao W; Yang J; Li Y; Liu B; Wang F; Chang C
    Mar Pollut Bull; 2016 Sep; 110(1):155-161. PubMed ID: 27368926
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sulfur metabolism in phototrophic sulfur bacteria.
    Frigaard NU; Dahl C
    Adv Microb Physiol; 2009; 54():103-200. PubMed ID: 18929068
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Elucidation of dominant energy metabolic pathways of methane, sulphur and nitrogen in respect to mangrove-degradation for climate change mitigation.
    Padhy SR; Bhattacharyya P; Dash PK; Nayak SK; Parida SP; Baig MJ; Mohapatra T
    J Environ Manage; 2022 Feb; 303():114151. PubMed ID: 34844054
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.