BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

465 related articles for article (PubMed ID: 30546369)

  • 1. The Emerging Role of CD244 Signaling in Immune Cells of the Tumor Microenvironment.
    Agresta L; Hoebe KHN; Janssen EM
    Front Immunol; 2018; 9():2809. PubMed ID: 30546369
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CD244 represents a new therapeutic target in head and neck squamous cell carcinoma.
    Agresta L; Lehn M; Lampe K; Cantrell R; Hennies C; Szabo S; Wise-Draper T; Conforti L; Hoebe K; Janssen EM
    J Immunother Cancer; 2020 Mar; 8(1):. PubMed ID: 32217758
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Advances in Understanding the Roles of CD244 (SLAMF4) in Immune Regulation and Associated Diseases.
    Sun L; Gang X; Li Z; Zhao X; Zhou T; Zhang S; Wang G
    Front Immunol; 2021; 12():648182. PubMed ID: 33841431
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of tumor cells and tumor microenvironment on NK-cell function.
    Vitale M; Cantoni C; Pietra G; Mingari MC; Moretta L
    Eur J Immunol; 2014 Jun; 44(6):1582-92. PubMed ID: 24777896
    [TBL] [Abstract][Full Text] [Related]  

  • 5. AMPK activation inhibits the functions of myeloid-derived suppressor cells (MDSC): impact on cancer and aging.
    Salminen A; Kauppinen A; Kaarniranta K
    J Mol Med (Berl); 2019 Aug; 97(8):1049-1064. PubMed ID: 31129755
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CD244 is expressed on dendritic cells and regulates their functions.
    Georgoudaki AM; Khodabandeh S; Puiac S; Persson CM; Larsson MK; Lind M; Hammarfjord O; Nabatti TH; Wallin RP; Yrlid U; Rhen M; Kumar V; Chambers BJ
    Immunol Cell Biol; 2015 Jul; 93(6):581-90. PubMed ID: 25643613
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CD84 is a regulator of the immunosuppressive microenvironment in multiple myeloma.
    Lewinsky H; Gunes EG; David K; Radomir L; Kramer MP; Pellegrino B; Perpinial M; Chen J; He TF; Mansour AG; Teng KY; Bhattacharya S; Caserta E; Troadec E; Lee P; Feng M; Keats J; Krishnan A; Rosenzweig M; Yu J; Caligiuri MA; Cohen Y; Shevetz O; Becker-Herman S; Pichiorri F; Rosen S; Shachar I
    JCI Insight; 2021 Feb; 6(4):. PubMed ID: 33465053
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Natural Killer Cell Interactions With Myeloid Derived Suppressor Cells in the Tumor Microenvironment and Implications for Cancer Immunotherapy.
    Zalfa C; Paust S
    Front Immunol; 2021; 12():633205. PubMed ID: 34025641
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targeting Myeloid-Derived Suppressor Cells to Bypass Tumor-Induced Immunosuppression.
    Fleming V; Hu X; Weber R; Nagibin V; Groth C; Altevogt P; Utikal J; Umansky V
    Front Immunol; 2018; 9():398. PubMed ID: 29552012
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Myeloid Cell Modulation by Tumor-Derived Extracellular Vesicles.
    Arkhypov I; Lasser S; Petrova V; Weber R; Groth C; Utikal J; Altevogt P; Umansky V
    Int J Mol Sci; 2020 Aug; 21(17):. PubMed ID: 32878277
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Harnessing the cDC1-NK Cross-Talk in the Tumor Microenvironment to Battle Cancer.
    Bödder J; Zahan T; van Slooten R; Schreibelt G; de Vries IJM; Flórez-Grau G
    Front Immunol; 2020; 11():631713. PubMed ID: 33679726
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exosomes as mediators of immune regulation and immunotherapy in cancer.
    Kugeratski FG; Kalluri R
    FEBS J; 2021 Jan; 288(1):10-35. PubMed ID: 32910536
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Negative regulation of myeloid-derived suppressor cells in cancer.
    Qu P; Boelte KC; Lin PC
    Immunol Invest; 2012; 41(6-7):562-80. PubMed ID: 23017135
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expansion and functions of myeloid-derived suppressor cells in the tumor microenvironment.
    Qu P; Wang LZ; Lin PC
    Cancer Lett; 2016 Sep; 380(1):253-6. PubMed ID: 26519756
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tumor promoting capacity of polymorphonuclear myeloid-derived suppressor cells and their neutralization.
    Groth C; Weber R; Lasser S; Özbay FG; Kurzay A; Petrova V; Altevogt P; Utikal J; Umansky V
    Int J Cancer; 2021 Nov; 149(9):1628-1638. PubMed ID: 34224592
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CRACC-targeting Fc-fusion protein induces activation of NK cells and DCs and improves T cell immune responses to antigenic targets.
    Aldhamen YA; Rastall DPW; Chen W; Seregin SS; Pereira-Hicks C; Godbehere S; Kaminski NE; Amalfitano A
    Vaccine; 2016 Jun; 34(27):3109-3118. PubMed ID: 27151882
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Myeloid expression of adenosine A2A receptor suppresses T and NK cell responses in the solid tumor microenvironment.
    Cekic C; Day YJ; Sag D; Linden J
    Cancer Res; 2014 Dec; 74(24):7250-9. PubMed ID: 25377469
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Myeloid Derived Suppressor Cells Interactions With Natural Killer Cells and Pro-angiogenic Activities: Roles in Tumor Progression.
    Bruno A; Mortara L; Baci D; Noonan DM; Albini A
    Front Immunol; 2019; 10():771. PubMed ID: 31057536
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential expression of SAP and EAT-2-binding leukocyte cell-surface molecules CD84, CD150 (SLAM), CD229 (Ly9) and CD244 (2B4).
    Romero X; Benítez D; March S; Vilella R; Miralpeix M; Engel P
    Tissue Antigens; 2004 Aug; 64(2):132-44. PubMed ID: 15245368
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiple Myeloma and the Immune Microenvironment.
    Kawano Y; Roccaro AM; Ghobrial IM; Azzi J
    Curr Cancer Drug Targets; 2017; 17(9):806-818. PubMed ID: 28201978
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.