BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

467 related articles for article (PubMed ID: 30546369)

  • 41. Regulatory T cell: a protection for tumour cells.
    Wang Y; Ma Y; Fang Y; Wu S; Liu L; Fu D; Shen X
    J Cell Mol Med; 2012 Mar; 16(3):425-36. PubMed ID: 21895966
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Combination Strategies to Optimize Efficacy of Dendritic Cell-Based Immunotherapy.
    van Gulijk M; Dammeijer F; Aerts JGJV; Vroman H
    Front Immunol; 2018; 9():2759. PubMed ID: 30568653
    [TBL] [Abstract][Full Text] [Related]  

  • 43. [Suppressor cells - the basis of the immunopathogenesis of cancer].
    Kozlov VA
    Vopr Onkol; 2016; 62(3):390-6. PubMed ID: 30462899
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The interaction of NK cells and dendritic cells in the tumor environment: how to enforce NK cell & DC action under immunosuppressive conditions?
    Jacobs B; Ullrich E
    Curr Med Chem; 2012; 19(12):1771-9. PubMed ID: 22414086
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Innate immune cells in the tumor microenvironment.
    Li MO; Wolf N; Raulet DH; Akkari L; Pittet MJ; Rodriguez PC; Kaplan RN; Munitz A; Zhang Z; Cheng S; Bhardwaj N
    Cancer Cell; 2021 Jun; 39(6):725-729. PubMed ID: 34129817
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Modulation of natural killer (NK) receptors on NK (CD3-/CD56+), T (CD3+/CD56-) and NKT-like (CD3+/CD56+) cells after heart transplantation.
    Aguilar P; Mathieu CP; Clerc G; Ethevenot G; Fajraoui M; Mattei S; Faure GC; Bene MC
    J Heart Lung Transplant; 2006 Feb; 25(2):200-5. PubMed ID: 16446221
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The Role of CXC Chemokine Receptors 1-4 on Immune Cells in the Tumor Microenvironment.
    Susek KH; Karvouni M; Alici E; Lundqvist A
    Front Immunol; 2018; 9():2159. PubMed ID: 30319622
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Endogenous dendritic cells from the tumor microenvironment support T-ALL growth via IGF1R activation.
    Triplett TA; Cardenas KT; Lancaster JN; Hu Z; Selden HJ; Jasso GJ; Balasubramanyam S; Chan K; Li L; Chen X; Marcogliese AN; Davé UP; Love PE; Ehrlich LI
    Proc Natl Acad Sci U S A; 2016 Feb; 113(8):E1016-25. PubMed ID: 26862168
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Myeloid-Derived Suppressor Cells in Tumors: From Mechanisms to Antigen Specificity and Microenvironmental Regulation.
    Yang Y; Li C; Liu T; Dai X; Bazhin AV
    Front Immunol; 2020; 11():1371. PubMed ID: 32793192
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Regulation of cellular and humoral immune responses by the SLAM and SAP families of molecules.
    Ma CS; Nichols KE; Tangye SG
    Annu Rev Immunol; 2007; 25():337-79. PubMed ID: 17201683
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Cysteine Cathepsins in Tumor-Associated Immune Cells.
    Jakoš T; Pišlar A; Jewett A; Kos J
    Front Immunol; 2019; 10():2037. PubMed ID: 31555270
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Highlights on molecular mechanisms of MDSC-mediated immune suppression: paving the way for new working hypotheses.
    Solito S; Pinton L; Damuzzo V; Mandruzzato S
    Immunol Invest; 2012; 41(6-7):722-37. PubMed ID: 23017143
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Synergistic Antimyeloma Activity of Dendritic Cells and Pomalidomide in a Murine Myeloma Model.
    Vo MC; Yang S; Jung SH; Chu TH; Lee HJ; Lakshmi TJ; Park HS; Kim HJ; Lee JJ
    Front Immunol; 2018; 9():1798. PubMed ID: 30123221
    [TBL] [Abstract][Full Text] [Related]  

  • 54. SLAM family receptors in natural killer cells - Mediators of adhesion, activation and inhibition via cis and trans interactions.
    Claus M; Urlaub D; Fasbender F; Watzl C
    Clin Immunol; 2019 Jul; 204():37-42. PubMed ID: 30359773
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Interaction Between MDSC and NK Cells in Solid and Hematological Malignancies: Impact on HSCT.
    Tumino N; Di Pace AL; Besi F; Quatrini L; Vacca P; Moretta L
    Front Immunol; 2021; 12():638841. PubMed ID: 33679798
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The immunobiology of myeloid-derived suppressor cells in cancer.
    Motallebnezhad M; Jadidi-Niaragh F; Qamsari ES; Bagheri S; Gharibi T; Yousefi M
    Tumour Biol; 2016 Feb; 37(2):1387-406. PubMed ID: 26611648
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Scrutinizing the Expression and Blockade of Inhibitory Molecules Expressed on T Cells from Acute Myeloid Leukemia Patients.
    Abdolmaleki M; Mojtabavi N; Zavvar M; Vaezi M; Noorbakhsh F; Nicknam MH
    Iran J Allergy Asthma Immunol; 2018 Jun; 17(3):265-273. PubMed ID: 29908544
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The impact of hypoxia on immune state in cancer.
    Mortezaee K; Majidpoor J
    Life Sci; 2021 Dec; 286():120057. PubMed ID: 34662552
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Avoiding phagocytosis-related artifact in myeloid derived suppressor cell T-lymphocyte suppression assays.
    Davis RJ; Silvin C; Allen CT
    J Immunol Methods; 2017 Jan; 440():12-18. PubMed ID: 27856191
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Myeloid-derived suppressor cells and tumor escape from immune surveillance.
    Umansky V; Blattner C; Fleming V; Hu X; Gebhardt C; Altevogt P; Utikal J
    Semin Immunopathol; 2017 Apr; 39(3):295-305. PubMed ID: 27787613
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.