These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
190 related articles for article (PubMed ID: 30546371)
1. Quantitative Phosphoproteomic and System-Level Analysis of TOR Inhibition Unravel Distinct Organellar Acclimation in Roustan V; Weckwerth W Front Plant Sci; 2018; 9():1590. PubMed ID: 30546371 [TBL] [Abstract][Full Text] [Related]
2. Quantitative in vivo phosphoproteomics reveals reversible signaling processes during nitrogen starvation and recovery in the biofuel model organism Roustan V; Bakhtiari S; Roustan PJ; Weckwerth W Biotechnol Biofuels; 2017; 10():280. PubMed ID: 29209414 [TBL] [Abstract][Full Text] [Related]
3. Investigating the effect of target of rapamycin kinase inhibition on the Chlamydomonas reinhardtii phosphoproteome: from known homologs to new targets. Werth EG; McConnell EW; Couso Lianez I; Perrine Z; Crespo JL; Umen JG; Hicks LM New Phytol; 2019 Jan; 221(1):247-260. PubMed ID: 30040123 [TBL] [Abstract][Full Text] [Related]
4. Metabolomic response of Chlamydomonas reinhardtii to the inhibition of target of rapamycin (TOR) by rapamycin. Lee DY; Fiehn O J Microbiol Biotechnol; 2013; 23(7):923-31. PubMed ID: 23727803 [TBL] [Abstract][Full Text] [Related]
5. Inhibition of TOR in Ford MM; Smythers AL; McConnell EW; Lowery SC; Kolling DRJ; Hicks LM Cells; 2019 Sep; 8(10):. PubMed ID: 31569396 [TBL] [Abstract][Full Text] [Related]
6. Inositol polyphosphates and target of rapamycin kinase signalling govern photosystem II protein phosphorylation and photosynthetic function under light stress in Chlamydomonas. Couso I; Smythers AL; Ford MM; Umen JG; Crespo JL; Hicks LM New Phytol; 2021 Dec; 232(5):2011-2025. PubMed ID: 34529857 [TBL] [Abstract][Full Text] [Related]
7. The target of rapamycin kinase affects biomass accumulation and cell cycle progression by altering carbon/nitrogen balance in synchronized Chlamydomonas reinhardtii cells. Jüppner J; Mubeen U; Leisse A; Caldana C; Wiszniewski A; Steinhauser D; Giavalisco P Plant J; 2018 Jan; 93(2):355-376. PubMed ID: 29172247 [TBL] [Abstract][Full Text] [Related]
8. Probing the global kinome and phosphoproteome in Chlamydomonas reinhardtii via sequential enrichment and quantitative proteomics. Werth EG; McConnell EW; Gilbert TS; Couso Lianez I; Perez CA; Manley CK; Graves LM; Umen JG; Hicks LM Plant J; 2017 Jan; 89(2):416-426. PubMed ID: 27671103 [TBL] [Abstract][Full Text] [Related]
9. Inhibition of target of rapamycin signaling by rapamycin in the unicellular green alga Chlamydomonas reinhardtii. Crespo JL; Díaz-Troya S; Florencio FJ Plant Physiol; 2005 Dec; 139(4):1736-49. PubMed ID: 16299168 [TBL] [Abstract][Full Text] [Related]
10. Target of Rapamycin Inhibition in Mubeen U; Jüppner J; Alpers J; Hincha DK; Giavalisco P Plant Cell; 2018 Oct; 30(10):2240-2254. PubMed ID: 30228127 [TBL] [Abstract][Full Text] [Related]
11. Capturing the phosphorylation and protein interaction landscape of the plant TOR kinase. Van Leene J; Han C; Gadeyne A; Eeckhout D; Matthijs C; Cannoot B; De Winne N; Persiau G; Van De Slijke E; Van de Cotte B; Stes E; Van Bel M; Storme V; Impens F; Gevaert K; Vandepoele K; De Smet I; De Jaeger G Nat Plants; 2019 Mar; 5(3):316-327. PubMed ID: 30833711 [TBL] [Abstract][Full Text] [Related]
12. The TOR Signaling Network in the Model Unicellular Green Alga Chlamydomonas reinhardtii. Pérez-Pérez ME; Couso I; Crespo JL Biomolecules; 2017 Jul; 7(3):. PubMed ID: 28704927 [TBL] [Abstract][Full Text] [Related]
13. Phosphoproteomics analysis of the effect of target of rapamycin kinase inhibition on Cucumis sativus in response to Podosphaera xanthii. Chen Q; Qu M; Chen Q; Meng X; Fan H Plant Physiol Biochem; 2023 Apr; 197():107641. PubMed ID: 36940522 [TBL] [Abstract][Full Text] [Related]
14. Synergism between Inositol Polyphosphates and TOR Kinase Signaling in Nutrient Sensing, Growth Control, and Lipid Metabolism in Chlamydomonas. Couso I; Evans BS; Li J; Liu Y; Ma F; Diamond S; Allen DK; Umen JG Plant Cell; 2016 Sep; 28(9):2026-2042. PubMed ID: 27600537 [TBL] [Abstract][Full Text] [Related]
15. TOR (target of rapamycin) is a key regulator of triacylglycerol accumulation in microalgae. Imamura S; Kawase Y; Kobayashi I; Shimojima M; Ohta H; Tanaka K Plant Signal Behav; 2016; 11(3):e1149285. PubMed ID: 26855321 [TBL] [Abstract][Full Text] [Related]
16. TOR inhibition interrupts the metabolic homeostasis by shifting the carbon-nitrogen balance in Mubeen U; Giavalisco P; Caldana C Plant Signal Behav; 2019; 14(11):1670595. PubMed ID: 31583958 [TBL] [Abstract][Full Text] [Related]
17. Target of rapamycin (TOR) plays a critical role in triacylglycerol accumulation in microalgae. Imamura S; Kawase Y; Kobayashi I; Sone T; Era A; Miyagishima SY; Shimojima M; Ohta H; Tanaka K Plant Mol Biol; 2015 Oct; 89(3):309-18. PubMed ID: 26350402 [TBL] [Abstract][Full Text] [Related]
18. TOR action in mammalian cells and in Caenorhabditis elegans. Long X; Müller F; Avruch J Curr Top Microbiol Immunol; 2004; 279():115-38. PubMed ID: 14560955 [TBL] [Abstract][Full Text] [Related]
19. Radio-sensitizing effects of VE-821 and beyond: Distinct phosphoproteomic and metabolomic changes after ATR inhibition in irradiated MOLT-4 cells. Šalovská B; Janečková H; Fabrik I; Karlíková R; Čecháková L; Ondrej M; Link M; Friedecký D; Tichý A PLoS One; 2018; 13(7):e0199349. PubMed ID: 30001349 [TBL] [Abstract][Full Text] [Related]
20. Assessment of cell-signaling pathways in the regulation of mammalian target of rapamycin (mTOR) by amino acids in rat adipocytes. Pham PT; Heydrick SJ; Fox HL; Kimball SR; Jefferson LS; Lynch CJ J Cell Biochem; 2000 Sep; 79(3):427-41. PubMed ID: 10972980 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]