These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
190 related articles for article (PubMed ID: 30546371)
21. Reciprocal regulation of photosynthesis and mitochondrial respiration by TOR kinase in Upadhyaya S; Rao BJ Plant Direct; 2019 Nov; 3(11):e00184. PubMed ID: 31832599 [TBL] [Abstract][Full Text] [Related]
22. The Arabidopsis TOR Kinase Specifically Regulates the Expression of Nuclear Genes Coding for Plastidic Ribosomal Proteins and the Phosphorylation of the Cytosolic Ribosomal Protein S6. Dobrenel T; Mancera-Martínez E; Forzani C; Azzopardi M; Davanture M; Moreau M; Schepetilnikov M; Chicher J; Langella O; Zivy M; Robaglia C; Ryabova LA; Hanson J; Meyer C Front Plant Sci; 2016; 7():1611. PubMed ID: 27877176 [TBL] [Abstract][Full Text] [Related]
23. Target of rapamycin (TOR): an integrator of nutrient and growth factor signals and coordinator of cell growth and cell cycle progression. Fingar DC; Blenis J Oncogene; 2004 Apr; 23(18):3151-71. PubMed ID: 15094765 [TBL] [Abstract][Full Text] [Related]
24. Interrogating the hidden phosphoproteome. Kang UB; Alexander WM; Marto JA Proteomics; 2017 Mar; 17(6):. PubMed ID: 28165663 [TBL] [Abstract][Full Text] [Related]
25. Targeted proteomics for Chlamydomonas reinhardtii combined with rapid subcellular protein fractionation, metabolomics and metabolic flux analyses. Wienkoop S; Weiss J; May P; Kempa S; Irgang S; Recuenco-Munoz L; Pietzke M; Schwemmer T; Rupprecht J; Egelhofer V; Weckwerth W Mol Biosyst; 2010 Jun; 6(6):1018-31. PubMed ID: 20358043 [TBL] [Abstract][Full Text] [Related]
26. Clonal variations in CHO IGF signaling investigated by SILAC-based phosphoproteomics and LFQ-MS. Schelletter L; Albaum S; Walter S; Noll T; Hoffrogge R Appl Microbiol Biotechnol; 2019 Oct; 103(19):8127-8143. PubMed ID: 31420692 [TBL] [Abstract][Full Text] [Related]
27. Integrating Phosphoproteomics and Bioinformatics to Study Brassinosteroid-Regulated Phosphorylation Dynamics in Arabidopsis. Lin LL; Hsu CL; Hu CW; Ko SY; Hsieh HL; Huang HC; Juan HF BMC Genomics; 2015 Jul; 16(1):533. PubMed ID: 26187819 [TBL] [Abstract][Full Text] [Related]
28. Comprehensive comparison of iTRAQ and label-free LC-based quantitative proteomics approaches using two Chlamydomonas reinhardtii strains of interest for biofuels engineering. Wang H; Alvarez S; Hicks LM J Proteome Res; 2012 Jan; 11(1):487-501. PubMed ID: 22059437 [TBL] [Abstract][Full Text] [Related]
29. Analysis of the phosphoproteome of Chlamydomonas reinhardtii provides new insights into various cellular pathways. Wagner V; Gessner G; Heiland I; Kaminski M; Hawat S; Scheffler K; Mittag M Eukaryot Cell; 2006 Mar; 5(3):457-68. PubMed ID: 16524901 [TBL] [Abstract][Full Text] [Related]
31. Inhibition of insulin signaling and adipogenesis by rapamycin: effect on phosphorylation of p70 S6 kinase vs eIF4E-BP1. El-Chaâr D; Gagnon A; Sorisky A Int J Obes Relat Metab Disord; 2004 Feb; 28(2):191-8. PubMed ID: 14970836 [TBL] [Abstract][Full Text] [Related]
32. Phosphoproteomics reveals network rewiring to a pro-adhesion state in annexin-1-deficient mammary epithelial cells. Alli-Shaik A; Wee S; Lim LHK; Gunaratne J Breast Cancer Res; 2017 Dec; 19(1):132. PubMed ID: 29233185 [TBL] [Abstract][Full Text] [Related]
33. Nuclear phosphoproteome analysis of 3T3-L1 preadipocyte differentiation reveals system-wide phosphorylation of transcriptional regulators. Rabiee A; Schwämmle V; Sidoli S; Dai J; Rogowska-Wrzesinska A; Mandrup S; Jensen ON Proteomics; 2017 Mar; 17(6):. PubMed ID: 27717184 [TBL] [Abstract][Full Text] [Related]
34. Protein kinase activity and identification of a toxic effector domain of the target of rapamycin TOR proteins in yeast. Alarcon CM; Heitman J; Cardenas ME Mol Biol Cell; 1999 Aug; 10(8):2531-46. PubMed ID: 10436010 [TBL] [Abstract][Full Text] [Related]
35. Tomato FK506 Binding Protein 12KD (FKBP12) Mediates the Interaction between Rapamycin and Target of Rapamycin (TOR). Xiong F; Dong P; Liu M; Xie G; Wang K; Zhuo F; Feng L; Yang L; Li Z; Ren M Front Plant Sci; 2016; 7():1746. PubMed ID: 27917191 [TBL] [Abstract][Full Text] [Related]
36. Target of rapamycin-signaling modulates starch accumulation via glycogenin phosphorylation status in the unicellular red alga Cyanidioschyzon merolae. Pancha I; Shima H; Higashitani N; Igarashi K; Higashitani A; Tanaka K; Imamura S Plant J; 2019 Feb; 97(3):485-499. PubMed ID: 30351485 [TBL] [Abstract][Full Text] [Related]
37. Quantitative Label-Free Phosphoproteomics Reveals Differentially Regulated Protein Phosphorylation Involved in West Nile Virus-Induced Host Inflammatory Response. Zhang H; Sun J; Ye J; Ashraf U; Chen Z; Zhu B; He W; Xu Q; Wei Y; Chen H; Fu ZF; Liu R; Cao S J Proteome Res; 2015 Dec; 14(12):5157-68. PubMed ID: 26485063 [TBL] [Abstract][Full Text] [Related]
38. Phosphoproteomic analysis of chromoplasts from sweet orange during fruit ripening. Zeng Y; Pan Z; Wang L; Ding Y; Xu Q; Xiao S; Deng X Physiol Plant; 2014 Feb; 150(2):252-70. PubMed ID: 23786612 [TBL] [Abstract][Full Text] [Related]
39. Profiling Chlamydomonas metabolism under dark, anoxic H2-producing conditions using a combined proteomic, transcriptomic, and metabolomic approach. Subramanian V; Dubini A; Astling DP; Laurens LM; Old WM; Grossman AR; Posewitz MC; Seibert M J Proteome Res; 2014 Dec; 13(12):5431-51. PubMed ID: 25333711 [TBL] [Abstract][Full Text] [Related]
40. Saccharomyces cerevisiae FKBP12 binds Arabidopsis thaliana TOR and its expression in plants leads to rapamycin susceptibility. Sormani R; Yao L; Menand B; Ennar N; Lecampion C; Meyer C; Robaglia C BMC Plant Biol; 2007 Jun; 7():26. PubMed ID: 17543119 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]