BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 30547179)

  • 1. Fabrication of composite microfluidic devices for local control of oxygen tension in cell cultures.
    Gao Y; Stybayeva G; Revzin A
    Lab Chip; 2019 Jan; 19(2):306-315. PubMed ID: 30547179
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxygen control with microfluidics.
    Brennan MD; Rexius-Hall ML; Elgass LJ; Eddington DT
    Lab Chip; 2014 Nov; 14(22):4305-18. PubMed ID: 25251498
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel microfluidic platform for high-resolution imaging of a three-dimensional cell culture under a controlled hypoxic environment.
    Funamoto K; Zervantonakis IK; Liu Y; Ochs CJ; Kim C; Kamm RD
    Lab Chip; 2012 Nov; 12(22):4855-63. PubMed ID: 23023115
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microbioreactors to manipulate oxygen tension and shear stress in the microenvironment of vascular stem and progenitor cells.
    Abaci HE; Devendra R; Soman R; Drazer G; Gerecht S
    Biotechnol Appl Biochem; 2012; 59(2):97-105. PubMed ID: 23586790
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A polydimethylsiloxane-polycarbonate hybrid microfluidic device capable of generating perpendicular chemical and oxygen gradients for cell culture studies.
    Chang CW; Cheng YJ; Tu M; Chen YH; Peng CC; Liao WH; Tung YC
    Lab Chip; 2014 Oct; 14(19):3762-72. PubMed ID: 25096368
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fine temporal control of the medium gas content and acidity and on-chip generation of series of oxygen concentrations for cell cultures.
    Polinkovsky M; Gutierrez E; Levchenko A; Groisman A
    Lab Chip; 2009 Apr; 9(8):1073-84. PubMed ID: 19350089
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfluidic PDMS (polydimethylsiloxane) bioreactor for large-scale culture of hepatocytes.
    Leclerc E; Sakai Y; Fujii T
    Biotechnol Prog; 2004; 20(3):750-5. PubMed ID: 15176878
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative measurement and control of oxygen levels in microfluidic poly(dimethylsiloxane) bioreactors during cell culture.
    Mehta G; Mehta K; Sud D; Song JW; Bersano-Begey T; Futai N; Heo YS; Mycek MA; Linderman JJ; Takayama S
    Biomed Microdevices; 2007 Apr; 9(2):123-34. PubMed ID: 17160707
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A microfluidic oxygen sink to create a targeted cellular hypoxic microenvironment under ambient atmospheric conditions.
    Barmaki S; Jokinen V; Obermaier D; Blokhina D; Korhonen M; Ras RHA; Vuola J; Franssila S; Kankuri E
    Acta Biomater; 2018 Jun; 73():167-179. PubMed ID: 29649636
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polydimethylsiloxane-polycarbonate Microfluidic Devices for Cell Migration Studies Under Perpendicular Chemical and Oxygen Gradients.
    Chiang HJ; Yeh SL; Peng CC; Liao WH; Tung YC
    J Vis Exp; 2017 Feb; (120):. PubMed ID: 28287582
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A multilayer microfluidic system for studies of the dynamic responses of cellular proteins to oxygen switches at the single-cell level.
    Fu W; Wang S; Ouyang Q; Luo C
    Integr Biol (Camb); 2024 Jan; 16():. PubMed ID: 38900168
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel standalone microfluidic device for local control of oxygen tension for intestinal-bacteria interactions.
    Wang C; Dang T; Baste J; Anil Joshi A; Bhushan A
    FASEB J; 2021 Feb; 35(2):e21291. PubMed ID: 33506497
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detachably assembled microfluidic device for perfusion culture and post-culture analysis of a spheroid array.
    Sakai Y; Hattori K; Yanagawa F; Sugiura S; Kanamori T; Nakazawa K
    Biotechnol J; 2014 Jul; 9(7):971-9. PubMed ID: 24802801
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A microfluidic cell culture array with various oxygen tensions.
    Peng CC; Liao WH; Chen YH; Wu CY; Tung YC
    Lab Chip; 2013 Aug; 13(16):3239-45. PubMed ID: 23784347
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hard top soft bottom microfluidic devices for cell culture and chemical analysis.
    Mehta G; Lee J; Cha W; Tung YC; Linderman JJ; Takayama S
    Anal Chem; 2009 May; 81(10):3714-22. PubMed ID: 19382754
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxygen gradients for open well cellular cultures via microfluidic substrates.
    Lo JF; Sinkala E; Eddington DT
    Lab Chip; 2010 Sep; 10(18):2394-401. PubMed ID: 20559583
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A high-yield method for generating mass-transfer gradients in elastomer microfluidics using impermeable capillaries.
    Pinelis M; Shamban L; Jovic A; Maharbiz MM
    Biomed Microdevices; 2008 Dec; 10(6):807. PubMed ID: 18654854
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication and operation of an oxygen insert for adherent cellular cultures.
    Oppegard S; Sinkala E; Eddington D
    J Vis Exp; 2010 Jan; (35):. PubMed ID: 20054290
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biofabrication of a three-dimensional liver micro-organ as an in vitro drug metabolism model.
    Chang R; Emami K; Wu H; Sun W
    Biofabrication; 2010 Dec; 2(4):045004. PubMed ID: 21079286
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probing hypoxia-induced staurosporine resistance in prostate cancer cells with a microfluidic culture system.
    Khanal G; Hiemstra S; Pappas D
    Analyst; 2014 Jul; 139(13):3274-80. PubMed ID: 24479128
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.